Difference between expectation value of ##x## and classical amplitude of oscillation for an harmonic oscillator

Gabri110
Messages
3
Reaction score
1
Homework Statement
The oscillator is in the state ##\lvert \psi (t)\rangle = \dfrac{1}{\sqrt{2}} \left( e^{-i (n-\frac{1}{2})\omega t}\lvert n-1 \rangle + e^{-i (n+\frac{1}{2})\omega t}\lvert n \rangle \right)##.

Calculate the amplitude of oscillation of a classical oscillator of this frequency and energy ##E = \langle\psi (t)\rvert H \lvert\psi (t)\rangle## and show that it differs from your result for ##\langle\psi (t)\rvert x \lvert\psi (t)\rangle## by a factor independent of ##n##.
Relevant Equations
##\lvert \psi (t)\rangle = \dfrac{1}{\sqrt{2}} \left( e^{-i (n-\frac{1}{2})\omega t}\lvert n-1 \rangle + e^{-i (n+\frac{1}{2})\omega t}\lvert n \rangle \right)##
Using the ladder operators I can easily compute ##E = \langle H\rangle = \hbar \omega n##, so I can find the amplitude of the classical oscillator, as ##E = \frac{1}{2} m \omega^2 x_{max}^2##, thus, ##x_{max} = \sqrt{\dfrac{2 E}{m \omega^2}} = \sqrt{\dfrac{2\hbar n}{m \omega}}##.

The expectation value of ##x## can be also easily computed using the ladder operators. I find ##\langle x\rangle = \sqrt{\dfrac{2\hbar n}{m \omega}}\cos{\omega t}##. This is clearly a problem, as I find that ##\langle x\rangle## is time dependent (and the classical solution isn't!). The difference is ##x_{max} - \langle x\rangle = \sqrt{\dfrac{2\hbar n}{m \omega}} (1 - \cos{\omega t})##, which isn't independent of ##n##, as the exercise statement says.

Can someone help me find where I have made a mistake?
 
Last edited:
Physics news on Phys.org
Reread the question. What does “factor” mean?
 
vela said:
Reread the question. What does “factor” mean?
Oh my... Thank you, I feel so dumb right now...
 
Gabri110 said:
I find ##\langle x\rangle = \sqrt{\dfrac{2\hbar n}{m \omega}}\cos{\omega t}##.
I got a slightly different result for the expression inside the square root. Of course, I might be the one making a mistake. But I calculated it two ways: using the ladder operators and using the known wavefunctions for the harmonic oscillator.

Also, since ##\langle x\rangle## oscillates harmonically, I wonder if it would be more appropriate to compare the amplitude, ##x_{max}##, of the classical oscillator with the amplitude of the ##\langle x\rangle## oscillation. I'm not sure.
 
Yeah, my bad, I had forgotten to divide by 2 the ladder operators...
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top