Difference between toughness and strength?

bullet
Messages
5
Reaction score
0
whoever could give a detailed explanation? :frown:
 
Engineering news on Phys.org
Strength refers to resistance to deformation, and also to a large elastic range. In the Elastic region of the stress-strain relationship, the relationship is described by a linear function, such that \sigma = E \epsilon, where \sigma is the stress, E is the Elastic modulus, and \epsilon is the strain.

At a point called the yield point, the relationship between stress and strain depart from linear, and the material yields meaning that permanent or inelastic and plastic deformation occur.

Beyond the yield point or yield strength, less stress is required for a given amount of strain (deformation). This proceeds up to the ultimate tensile strength, which is where uniform elongation is measured. At this point, a tensile specimen begins to 'neck', i.e. the change in cross-section becomes non-uniform. Also, beyond the ultimate tensile strength, the strain increases without additional stress. If the load is not immediately removed, the material will strain to failure.

Toughness is the resistance to failure or crack propagation. It is somewhat related to strength. Very strong materials will have low toughness, i.e. low tolerance for flaws or defects, i.e. incipient cracks.

Toughness relates to the amount of energy absorbed in order to propagate a crack. Materials with high toughness require greater energy (by virtue of force or stress) to maintain crack propagation. Toughness is described in terms of a stress intensity factor (K) or J-integral, or the strain energy release rate of nonlinear elastic materials, (J).

See - http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_epfm_J.cfm - for more on J-integral.
 
Thank you Astronuc. Much helpful.
 
bullet said:
whoever could give a detailed explanation? :frown:

Picture the stress-strain curve for an elastic-plastic metal. Strength is how high the curve reaches on the stress axis. Toughness is the area under the curve (and so related to energy).

A good structural alloy is both strong and tough.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
26K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
7K
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K