MHB Difference Quotient for Linear and Quadratic Functions

Click For Summary
The discussion focuses on evaluating the difference quotient for linear and quadratic functions. For the linear function f(x) = 2x - 3, the difference quotient simplifies to a constant value of 2. In contrast, for the quadratic function f(x) = 2x^2 - 3x, the difference quotient results in 4x - 3, which varies with x. The thread emphasizes deriving general formulas for the difference quotient before applying them to specific functions. Overall, the difference quotient provides insights into the slope of linear and quadratic functions at any point.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Evaluate the difference quotient for?

Evaluate the difference quotient for:

1) f(x)=2x-3
2) f(x)=2x^2-3x

PLEASE SHOW ALL WORK

I have posted a link there to this topic so the OP may see my work.
 
Mathematics news on Phys.org
Hello an,

Rather than work these specific problems, let's use general functions to develop theorems which we can then use to answer the questions.

i) Linear functions.

Let $$f(x)=ax+b$$

and so the difference quotient is:

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{(a(x+h)+b)-(ax+b)}{h}=\lim_{h\to0}\frac{ax+ah+b-ax-b}{h}=\lim_{h\to0}\frac{ah}{h}=\lim_{h\to0}a=a$$

ii) Quadratic functions.

Let $$f(x)=ax^2+bc+c$$

and so the difference quotient is:

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{\left(a(x+h)^2+b(x+h)+c \right)-\left(ax^2+bx+c \right)}{h}=$$

$$\lim_{h\to0}\frac{ax^2+2ahx+ah^2+bx+bh+c-ax^2-bx-c}{h}=\lim_{h\to0}\frac{2ahx+ah^2+bh}{h}= \lim_{h\to0}(2ax+ah+b)=2ax+b$$

Now we may answer the questions:

1.) This is a linear function. We identity $a=2,\,b=-3$ and so:

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=a=2$$

2.) This is a quadratic function. We identity $a=2,\,b=-3,\,c=0$ and so:

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=2ax+b=4x-3$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K