Hello, zolton5971!
Find the difference quotient \frac{f(x+h)-f(x)}{h}
for f(x)\:=\:5x^2+4
There are three steps to the Difference Quotient.
(1) Find f(x+h).
. . Replace x with x+h ... and simplify.
(2) Subtract f(x), the original function ... and simplify.
(3) Divide by h ... factor and reduce.Here we go!
(1)\;f(x+h) \;=\;5(x+h)^2 + 4
. . . . . . . . . . =\; 5(x^2+2xh + h^2) + 4
. . . . . . . . . . =\;5x^2 + 10xh + 5h^2 + 4
(2)\;f(x+h)-f(x) \;=\;(5x^2+ 10xh + 5h^2 + 4) - (5x^2 + 4)
. . . . . . . . . . . . . . . .=\;5x^2 + 10xh + 5h^2+ 4 - 5x^2 - 4
. . . . . . . . . . . . . . . .=\; 10xh + 5h^2
(3)\;\frac{f(x+h)-f(x)}{h} \;=\; \frac{10xh +5h^2}{h}
. . . . . . . . . . . . . . . . .=\;\frac{5h(2x+h)}{h}
. . . . . . . . . . . . . . . . .=\; 5(2x+h)
There!