I Differences between left vs right actions in some group theory questions

elias001
Messages
380
Reaction score
24
The following is taken from A first Course in Abstract Algebra Rings, Groups, and Fields Third Edition by Anderson and Feil.##\\\\##



(Assumed exercise and example) ##\\\\##

22.15 In this problem we consider a particular important example of a group endomorphism. Suppose ##G## is a group and ##g\in G##. Define the function ##\varphi:G\to G## by setting ##\varphi(h)=ghg^{-1}\\\\##

(a) Prove that ##\varphi## is a group isomorphism##\\\\##

(b) What can you say about ##\varphi## if the group is abelian? What if ##g\in Z(g),## the center of ##G.\\\\##

Example 28.4##\\\\##

Let ##G## act on ##G## by conjugation given by ##g(x)=gxg^{-1};## see Exercise 22.15. In that exercise you show that the function ##g(x)## is a bijection (that is, a permutation of ##G##). We claim also that this action is homomorphic: That is, we claim that ##g(h(x))=(gh)(x).\\\\##

Exercise Question:##\\\\##

6. Let ##S## be a subgroup of the group ##G.## We wish to consider ##G## acting on the right cosets of ##S## by right multiplication. That is, ##g(Sh)=Shg.## Show that this does not work in general. That is, ##G## is not a group of permutations of the right cosets of ##S.## What goes wrong here? ##\\\\##

7. We wish to let ##G## act on ##G## by conjugation ##g(x)=g^{-1}xg.## Note this is different from conjugation we used in Example 28.4. Show that this does not work in general. What goes wrong here?##\\\\##

8. We ask the same question as the previous exercise, where we try to have ##G## act on its set of subgroups by the conjugation, ##g(S)=g^{-1}Sg.## What goes wrong here?##\\\\##

(c) Show that the order of ##h## is equal to the order of ##\varphi(h)=ghg^{-1}.\\\\##

Questions: I have some quick questions. For the Exercises Questions 6, 7,8; why can't right action not work in those three exercises? Is it the way $g$ is defined in all three questions or does it have to do with how or what $G$ acts on? I thought there is symmetry in the definition of group actions. Meaning if we know how to define it for right action, it should be the same for left action? Am I missing something?
 
Physics news on Phys.org
elias001 said:
Questions: I have some quick questions. For the Exercises Questions 6, 7,8; why can't right action not work in those three exercises? Is it the way $g$ is defined in all three questions or does it have to do with how or what $G$ acts on? I thought there is symmetry in the definition of group actions. Meaning if we know how to define it for right action, it should be the same for left action? Am I missing something?
This is the point of these exercises. There is a difference between left and right action. I don't have the book, but I am sure that the definitions are given. Try to do the exercises, if you just see the answer you are not going to grok it as well as when you do the work.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Replies
13
Views
570
Replies
3
Views
435
Replies
1
Views
2K
Replies
19
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top