Differentiability of complex function

Click For Summary
SUMMARY

The function f(z) = Re(z) is proven to be non-differentiable at any point in the complex analysis context. The confusion arises from conflating the concept of differentiability in real analysis with that in complex analysis. In complex analysis, a function is differentiable if it satisfies the Cauchy-Riemann (CR) equations, which f(z) does not. The limit definition of differentiability in complex analysis further clarifies that the limit must exist for the function to be considered differentiable.

PREREQUISITES
  • Understanding of complex functions and their properties
  • Familiarity with Cauchy-Riemann equations
  • Knowledge of limits and continuity in calculus
  • Basic concepts of differentiability in real analysis
NEXT STEPS
  • Study the Cauchy-Riemann equations in detail
  • Explore the implications of complex differentiability on real differentiability
  • Learn about the geometric interpretation of complex functions
  • Investigate examples of complex functions that are differentiable and those that are not
USEFUL FOR

Students and professionals in mathematics, particularly those studying complex analysis, as well as educators teaching the differences between real and complex differentiability.

Suvadip
Messages
68
Reaction score
0
I have found a question
Prove that f(z)=Re(z) is not differentiable at any point.

According to me f(z)=Re(z)=Re(x+iy)=x which is differentiable everywhere. Then where is the mistake?
 
Physics news on Phys.org
You have to differentiate between complex differentiable and the usual case of differetiability in real analysis.
If complex valued function is complex differentiable then it must satisfy the CR equations.

Or using the definition

$$\lim_{\Delta z \to 0} \frac{f(z+\Delta z )-f(z)}{\Delta z }= \lim _{ \Delta z \to 0}\frac{x + \Delta x - x }{\Delta z }=\lim _{ (\Delta x ,\Delta y ) \to 0}\frac{\Delta x }{\Delta x +i \Delta y }$$

Where the last limit doesn't exist .
 
suvadip said:
I have found a question
Prove that f(z)=Re(z) is not differentiable at any point.

According to me f(z)=Re(z)=Re(x+iy)=x which is differentiable everywhere. Then where is the mistake?

The mistake is that you are confusing differenciable as used in real analysis and differenciable as used in complex analysis. It is the same word but it means different things!

Definition: A function $f:\mathbb{R}^n \to \mathbb{R}^m$ is called differenciable iff for any point $p\in \mathbb{R}^n$ there exists a linear map $L:\mathbb{R}^n \to \mathbb{R}^m$ such that $f(p+x) = f(p) + pL(x) + \varepsilon(x)$ where $\varepsilon(x)/|x| \to 0$ as $x\to 0$. This linear map $L$ is what we call the derivative of $f$ at $p$ and denote it by $Df(p)$.

In the special case when $n=m=1$, the definition of differenciable as a limit quotient coincides with this more general definition. So we rather adopt this new definition.

In complex analysis we define,

Definition: A function $f:\mathbb{C}\to \mathbb{C}$ is called differenciable iff for any point $p$ we have that the function $(f(z) - f(p))/(z-p)$ has a limit as $p\to z$. In this case we denote the derivative by $f'(p)$.

Any time we have a function $f:\mathbb{C}\to \mathbb{C}$ it induces a map $f_*:\mathbb{R}^2\to \mathbb{R}^2$. It is an exercise to show that if $f$ is differenciable in the complex sense then $f_*$ is differenciable in the real sense. But the converse is not true and your question is an example of how the converse may break down.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K