MHB Differentiability of complex function

Click For Summary
The function f(z) = Re(z) is not differentiable at any point in the complex sense, despite being differentiable in the real analysis context. The confusion arises from the differing definitions of differentiability in real and complex analysis. For a function to be complex differentiable, it must satisfy the Cauchy-Riemann equations, which f(z) does not. The limit defining complex differentiability does not exist for f(z), highlighting the distinction between the two types of differentiability. Understanding these differences is crucial in complex analysis.
Suvadip
Messages
68
Reaction score
0
I have found a question
Prove that f(z)=Re(z) is not differentiable at any point.

According to me f(z)=Re(z)=Re(x+iy)=x which is differentiable everywhere. Then where is the mistake?
 
Physics news on Phys.org
You have to differentiate between complex differentiable and the usual case of differetiability in real analysis.
If complex valued function is complex differentiable then it must satisfy the CR equations.

Or using the definition

$$\lim_{\Delta z \to 0} \frac{f(z+\Delta z )-f(z)}{\Delta z }= \lim _{ \Delta z \to 0}\frac{x + \Delta x - x }{\Delta z }=\lim _{ (\Delta x ,\Delta y ) \to 0}\frac{\Delta x }{\Delta x +i \Delta y }$$

Where the last limit doesn't exist .
 
suvadip said:
I have found a question
Prove that f(z)=Re(z) is not differentiable at any point.

According to me f(z)=Re(z)=Re(x+iy)=x which is differentiable everywhere. Then where is the mistake?

The mistake is that you are confusing differenciable as used in real analysis and differenciable as used in complex analysis. It is the same word but it means different things!

Definition: A function $f:\mathbb{R}^n \to \mathbb{R}^m$ is called differenciable iff for any point $p\in \mathbb{R}^n$ there exists a linear map $L:\mathbb{R}^n \to \mathbb{R}^m$ such that $f(p+x) = f(p) + pL(x) + \varepsilon(x)$ where $\varepsilon(x)/|x| \to 0$ as $x\to 0$. This linear map $L$ is what we call the derivative of $f$ at $p$ and denote it by $Df(p)$.

In the special case when $n=m=1$, the definition of differenciable as a limit quotient coincides with this more general definition. So we rather adopt this new definition.

In complex analysis we define,

Definition: A function $f:\mathbb{C}\to \mathbb{C}$ is called differenciable iff for any point $p$ we have that the function $(f(z) - f(p))/(z-p)$ has a limit as $p\to z$. In this case we denote the derivative by $f'(p)$.

Any time we have a function $f:\mathbb{C}\to \mathbb{C}$ it induces a map $f_*:\mathbb{R}^2\to \mathbb{R}^2$. It is an exercise to show that if $f$ is differenciable in the complex sense then $f_*$ is differenciable in the real sense. But the converse is not true and your question is an example of how the converse may break down.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K