- #1

- 9

- 0

## Homework Statement

I apologize for not knowing how to use Latex, so I will type the problem as it is read...

Prove that for all x greater than or equal to 0, we have

the integral from 0 to x for [g(x)]^3 dx which is less than or equal to

(the integral from 0 to x for g(x) dx)^2.

Suppose that g is a differentiable function with g(0) = 0 and 0 is less than g prime which is less than or equal to 1.

Also, the brackets around the g(x) are supposed to be there, so it is to the power 3, as in C^3. The parentheses around the second part of the problem are there to show it is to the power 2.

Sorry for the non-Latex format.

## Homework Equations

I do not know where to start, but think it involves MVT (the Mean Value Theorem) and/or Rolle's Theorem.

## The Attempt at a Solution

I tried working with a square root, but was unsure. My skills are rusty.

Thanks for any help.