The equation [math]mu\frac{du}{dx}= A+ Bu^2[/math] can be written as [math]\frac{mu du}{A+ Bu^2}= dx[/math]. To integrate the left side, let [math]v= A+ Bu^2[/math] so that [math]dv= 2Bu du[/math] or [math]udu= \frac{dv}{2B}[/math]. Then [math]\frac{mu du}{A+ Bu^2}= \frac{m dv}{2Bv}= dx[/math]. Integrating, [math]\frac{m}{2B} ln(v)= x+ C[/math] or [math]ln(v)= \frac{2Bx}{m}+ C'[/math] (where C'= 2BC/m) and then [math]v= A+ Bu^2= C''e^{2Bx/m}[/math] (where [math]C''= e^{C'}[/math]).