Differential equation from derivative of time dilation

Click For Summary
SUMMARY

The forum discussion centers on the differentiation of the time dilation equation to analyze how the time of a moving observer (##t'##) changes relative to a stationary observer (##t##). The user derived the expression $$\frac {dt'} {dt}=γ+\frac {tva} {γc^2}$$, where ##γ=\frac 1 {\sqrt {1 - \frac {v^2} {c^2}}## and ##a=\frac {d^2x} {dt^2}##. However, it was clarified that for a general observer with non-constant velocity, the relationship is integral, expressed as $$\tau = \int^t \gamma^{-1} \, dt$$, and that the derivative $$\frac {dt'} {dt}$$ will always yield ##\gamma^{-1}##, not zero.

PREREQUISITES
  • Understanding of time dilation in special relativity
  • Familiarity with differential equations
  • Knowledge of Lorentz transformations
  • Basic calculus, particularly differentiation and integration
NEXT STEPS
  • Study the integral form of time dilation in special relativity
  • Learn about Lorentz transformations and their implications
  • Explore the application of differential equations in physics
  • Investigate the concept of proper time and its relation to time dilation
USEFUL FOR

Physicists, students of relativity, and anyone interested in the mathematical foundations of time dilation and its implications in special relativity.

bb1414
Messages
4
Reaction score
2
Hi all! I was messing around with the equation for time dilation. What I wanted to do was see how the time of a moving observer ##t'## changed with respect to the time of a stationary observer ##t##. So I differentiated the equation for time dilation ##t'## with respect to ##t##:
$$\frac {dt'} {dt}=\frac {d} {dt}\frac t {\sqrt {1 - \frac {v^2} {c^2}}}$$
Where ##v=\frac {dx} {dt}##. This gave me the following result:
$$\frac {dt'} {dt}=γ+\frac {tva} {γc^2}$$
Where ##γ=\frac 1 {\sqrt {1 - \frac {v^2} {c^2}}}## and ##a=\frac {d^2x} {dt^2}##.

For one, I found this pretty interesting already, especially the product ##tva## in the numerator of the second term. Rewriting this in terms of the position of the moving observer ##x(t)## should help with I'm asking for:
$$\frac {dt'} {dt}=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$

I'm interested in finding a solution for when the change in the time of the moving observer with respect to the time of the stationary observer is zero, or ##\frac {dt'} {dt}=0##. More specifically, I'm trying to find a position function ##x(t)## that satisfies the differential equation:
$$0=\frac 1 {\sqrt {1 - \frac {x'^2} {c^2}}}+\frac {tx'x''} {c^2}\sqrt {1 - \frac {x'^2} {c^2}}$$
I'm not too great with differential equations (especially of this caliber) so I'm having some trouble solving this. Can any of you help me out here to find a generalized solution for ##x(t)##?

Thank you!

(Also, I'd love to hear your interpretations of my result for ##\frac {dt'} {dt}##!)
 
Physics news on Phys.org
Your starting assumption is wrong. For a general observer for whom the velocity is not constant, the time-dilation is an integral relationship, i.e.,
$$
\tau = \int^t \gamma^{-1} \, dt,
$$
not ##\tau = \gamma t## (also note that it is ##\gamma^{-1}##, not ##\gamma##). Only for constant speed does this integrate to ##\tau = t/\gamma##.

bb1414 said:
I'm interested in finding a solution for when the change in the time of the moving observer with respect to the time of the stationary observer is zero, or ##\frac {dt'} {dt}=0##.

This is never the case. That derivative will always be ##\gamma^{-1}##.
 
  • Like
Likes   Reactions: Dale
Orodruin said:
Your starting assumption is wrong. For a general observer for whom the velocity is not constant, the time-dilation is an integral relationship, i.e.,
$$
\tau = \int^t \gamma^{-1} \, dt,
$$
not ##\tau = \gamma t## (also note that it is ##\gamma^{-1}##, not ##\gamma##). Only for constant speed does this integrate to ##\tau = t/\gamma##.
This is never the case. That derivative will always be ##\gamma^{-1}##.

Thanks for clearing this up Orodruin. My answer did seem a little odd to me, and this makes much more sense.
 
  • Like
Likes   Reactions: Dale
bb1414 said:
Hi all! I was messing around with the equation for time dilation. What I wanted to do was see how the time of a moving observer ##t'## changed with respect to the time of a stationary observer ##t##. So I differentiated the equation for time dilation ##t'## with respect to ##t##:
$$\frac {dt'} {dt}=\frac {d} {dt}\frac t {\sqrt {1 - \frac {v^2} {c^2}}}$$
Where ##v=\frac {dx} {dt}##. This gave me the following result:
$$\frac {dt'} {dt}=γ+\frac {tva} {γc^2}$$
Where ##γ=\frac 1 {\sqrt {1 - \frac {v^2} {c^2}}}## and ##a=\frac {d^2x} {dt^2}##.

I have a couple of concerns. Firstly, using your expression for t', I get
$$\frac{dt'}{dt} = \gamma +\frac{t\,v\,a}{\gamma^3 \, c^2}
$$

I have some other concerns. The Lorentz transform gives

$$t' = \gamma \left( t - \frac{vx}{c^2} \right)$$

are you intending to evaluate ##\frac{\partial t'}{\partial t}## at x=0? This gives the answer that Orodruin mentioned if you work it out, namely

$$\frac{\partial t'}{\partial t} |_{x=0} = 1 / \gamma$$

In general ##\frac{\partial t'}{\partial t}## will depend along what worldline one evaluates it, and it's a partial differential equation, not a differential equation. One can avoid using PDE's if one manages to replace one of the time coordinates with proper time, ##\tau##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
963