MHB Differential equation with eigenvector (complex number)

Click For Summary
The discussion focuses on solving a system of linear differential equations with initial conditions. The proposed solutions, $f(t) = -\sin t$ and $g(t) = \cos t$, are incorrect as they do not satisfy the original equations. The eigenvalues, $\lambda = 1 - i$ and $\lambda = 1 + i$, are confirmed to be correct, but there is an error in calculating the corresponding eigenvectors. Participants emphasize the importance of verifying solutions independently rather than seeking validation from others. The conversation highlights the need for careful analysis in solving differential equations.
Petrus
Messages
702
Reaction score
0
Hello MHB,
Solve the following system of linear differential equation
$$f'=f-g$$
$$g'=f+g$$

with bounded limit $$f(0)=0$$, $$g(0)=1$$
could anyone check if My answer is correct? Just to make sure I understand correctly!
ps we get $$\lambda=1-i$$ and $$\lambda=1+i$$
2d0l1qr.jpg

Regards,
$$|\pi\rangle$$
 
Last edited:
Physics news on Phys.org
Your solution is $f(t)=-\sin t,\;g(t)=\cos t.$ But the equality $f'(t)=f(t)-g(t)$ is not satisfied.
 
Petrus said:
Hello MHB,
Solve the following system of linear differential equation
$$f'=f-g$$
$$g'=f+g$$

with bounded limit $$f(0)=0$$, $$g(0)=1$$
could anyone check if My answer is correct?
First thing to say here is that you never need to ask whether your answer to a differential equation is correct – you can check it for yourself! Your answer here (with $c_1=0$ and $c_1=1$) is $f(x) = -\sin t$ and $g(x) = \cos t$. Is that correct? To see whether it is, go back to the original equations. One of them says that $f' = f-g$. If your answer is correct then $f'(t) = -\cos t$ and $f(t) - g(t) = -\sin t - \cos t$. Those are not the same, so your answer cannot be right.

Your eigenvalues $$\lambda=1-i$$ and $$\lambda=1+i$$ are correct, but you must have gone wrong in calculating the eigenvectors.

Edit. Fernando Revilla got there first, but I'll leave my comment anyway, since it slightly amplifies what he said.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
491
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 26 ·
Replies
26
Views
828
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K