MHB Differentiation / Integration Help

Click For Summary
To find the value of the constant q in the gradient function dy/dx = 2 + q/(5x^2) with a turning point at (0.5, -4), the gradient at this point must equal zero. Substituting x = 0.5 into the gradient expression results in the equation 2 + 4q/5 = 0. Solving this equation gives q = -2.5. The integration process for y is not necessary to determine q, as the gradient condition is sufficient. Thus, the value of q is confirmed as -2.5.
Joe20
Messages
53
Reaction score
1
The curve has a gradient function dy/dx = 2 +q/(5x^2) where q is a constant, and a turning point at (0.5, -4). Find the value of q.

option 1 : 2.5
option 2: -2.5
option 3: 0
Option 4: -3

I couldn't find the answer and will need assistance to how the answer can be obtained.

I have substituted x = 0.5 into dy/dx to get the gradient expression of 2 + 4q/5 and integrated to get y = 2x - q/(5x) + c.
It seems impossible for me to get the value of q since c could not be found. I am not sure if the question has some missing information to continue. Your help will be greatly appreciated. Thanks.
 
Physics news on Phys.org
Since the given point is a turning point, we must have:

$$\left.\d{y}{x}\right|_{x=\frac{1}{2}}=2+\frac{q}{5\left(\frac{1}{2}\right)^2}=2+\frac{4q}{5}=0$$

Now you just need to solve for $q$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K