I know that ##\frac{\partial}{\partial (\partial_{\mu}\phi)} \big( \partial_{\mu} \phi\ \partial^{\mu} \phi \big) = \partial_{\mu} \phi##.(adsbygoogle = window.adsbygoogle || []).push({});

Now, I need to prove this to myself.

So, here goes nothing.

##\frac{\partial}{\partial (\partial_{\mu}\phi)} \big( \partial_{\mu} \phi\ \partial^{\mu} \phi \big)##

## = \frac{\partial}{\partial (\partial_{\mu}\phi)} \big( \eta^{\mu\nu}\partial_{\mu} \phi\ \partial_{\nu} \phi \big)##

##= \eta^{\mu\nu}\ \partial_{\nu} \phi + \eta_{\mu\nu} \eta^{\mu\nu}\ \partial_{\mu} \phi##,

where I first differentiated the factor ##\partial_{\mu}\phi## with respect to ##\partial_{\mu}\phi## and then I differentiated the factor ##\partial_{\nu}\phi## with respect to ##\partial_{\mu}\phi##.

Am I correct so far?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Differentiation of a product of 4-gradients wrt a 4-gradient

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads for Differentiation product gradients |
---|

A How to calculate the second fundamental form of a submanifold? |

I Diffeomorphism invariance and contracted Bianchi identity |

A Smoothness of multivariable function |

A Smooth extension on manifolds |

A Is tangent bundle TM the product manifold of M and T_pM? |

**Physics Forums | Science Articles, Homework Help, Discussion**