Reconciling 2 expressions for Riemann curvature tensor

Click For Summary

Discussion Overview

The discussion centers around reconciling two expressions for the Riemann curvature tensor as presented in Carroll's General Relativity notes. Participants explore the coordinate-free definition and its index-based counterpart, examining the implications of torsion and the commutation of vector fields. The scope includes theoretical aspects of general relativity and mathematical reasoning related to curvature tensors.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about reconciling the coordinate-free definition of the Riemann tensor with its index-based expression, particularly regarding the second term on the right-hand side of the equations.
  • Several participants discuss the definition of the torsion tensor, with one providing a formal definition and noting that it is zero in standard general relativity.
  • Another participant points out that the last term in the coordinate-free definition is nonzero even when the torsion tensor is zero, challenging the assumption that it corresponds solely to torsion in the index-based expression.
  • There is a suggestion that the comparison of the two equations should involve non-commuting vectors rather than coordinate basis vectors, which commute.
  • One participant revises their approach to focus on matching the right-hand sides of the equations rather than the left-hand sides, acknowledging earlier misunderstandings.
  • Another participant emphasizes the need for a valid matching method that applies to any vectors, not just specific choices.

Areas of Agreement / Disagreement

Participants do not reach a consensus on how to reconcile the two expressions for the Riemann curvature tensor. There are multiple competing views regarding the roles of torsion and the appropriateness of using specific vector fields for comparison.

Contextual Notes

Participants note that the equations involve assumptions about the properties of the connection and the nature of the vectors used in the comparison, which may affect the validity of their arguments.

  • #31
PeterDonis said:
The whole calculation is wrong because it's based on a wrong assumption: that you can obtain Carroll's equation 3.66 by applying the Riemann curvature tensor to general (non-commuting) vector fields. You can't. You obtain Carroll's Equation 3.66 by applying the Riemann curvature tensor to coordinate basis vector fields only.
(Hope I don't sound argumentative, it's just that I always try to get full clarity) So a couple of points:
  1. I was asking about calculation on a standalone basis (the calculation itself doesn't refer to Carroll's equation) - look at it as a generic differential geometry calculation. I'm not sure if (and where) I've gone wrong in that
  2. The identity is a result on second order covariant derivatives and the definition is that of a total covariant derivative. Both can be found in Lee's Introduction to Riemannian Manifolds (resp. Proposition 4.21 and Proposition 4.17)
 
Physics news on Phys.org
  • #32
Shirish said:
I was asking about calculation on a standalone basis
Then I don't understand what you are trying to show with the calculation. I also don't understand what in Carroll you are trying to compare it to, if it isn't Equation 3.66.

(I note, btw, that while you use general vectors ##X##, ##Y##, and ##Z##, you use the coordinate basis vector ##\partial_\rho## instead of a general covector. You should use a general covector.)
 
  • #33
PeterDonis said:
Then I don't understand what you are trying to show with the calculation.
So the calculation shows that $$X^{\mu}Y^{\nu}Z^{\sigma}R^{\rho}_{\ \ \sigma\mu\nu}\partial_{\rho}=X^{\mu}Y^{\nu}\big(T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})\big)\partial_{\rho}$$
$$\implies X^{\mu}Y^{\nu}\big(Z^{\sigma}R^{\rho}_{\ \ \sigma\mu\nu}\big)\partial_{\rho}=X^{\mu}Y^{\nu}\big(T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})\big)\partial_{\rho}$$
$$\implies Z^{\sigma}R^{\rho}_{\ \ \sigma\mu\nu}=T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})$$ and this is what I was trying to compare to Carroll's eq. 3.66
 
  • #34
Shirish said:
So the calculation shows that $$X^{\mu}Y^{\nu}Z^{\sigma}R^{\rho}_{\ \ \sigma\mu\nu}\partial_{\rho}=X^{\mu}Y^{\nu}\big(T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})\big)\partial_{\rho}$$
$$\implies X^{\mu}Y^{\nu}Z^{\sigma}\big(R^{\rho}_{\ \ \sigma\mu\nu}\big)\partial_{\rho}=X^{\mu}Y^{\nu}\big(T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})\big)\partial_{\rho}$$
$$\implies R^{\rho}_{\ \ \sigma\mu\nu}=T_{\mu\nu}^{\ \ \ \ \lambda}(\nabla_{\partial_{\lambda}}Z)^{\rho}+\nabla^2Z(\text{d}x^{\rho},\partial_{\nu},\partial_{\mu})-\nabla^2Z(\text{d}x^{\rho},\partial_{\mu},\partial_{\nu})$$ and this is what I was trying to compare to Carroll's eq. 3.66
You still do not get it. It makes no sense to compare what you calculated with Carroll's Equation 3.66. I have already explained why several times. There is no point in explaining it again. You are evidently on a fool's errand and you are not listening when I try to explain that.
 
  • #35
The OP question is based on a misunderstanding, which has been repeatedly explained. Enough is enough. Thread closed.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 124 ·
5
Replies
124
Views
9K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K