(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose that you have a reflection diffraction grating with n=140 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. How wide does this grating need to be to allow you to resolve the two lines 589.00 and 589.59 nanometers, which are a well known pair of lines for sodium, in the second order (m=2)?

2. Relevant equations

maxima for reflection diffraction grating: sinθ=(mλ)/d where m=2 in this instance

Rayleigh's resolution criterion: sinθ=1.22*(λ/d)

Spectrometer: λ=(d/m)*sinθ

d=distance between slits

3. The attempt at a solution

m=2 and d is the unknown. I tried setting the above equations equal to each other, eliminating sinθ, but I couldn't get any further because I don't know which λ to use since we are trying to separate two different wavelengths.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Diffraction grating spectrometer

**Physics Forums | Science Articles, Homework Help, Discussion**