Hi(adsbygoogle = window.adsbygoogle || []).push({});

I am struggling to get my head fully around the conjugacy classes of D5.

Everywhere I have looked seems to say that there are 4 irreducible representations of D5 which implies that there are 4 conjugacy classes. However, when examining the symmetry of the pentagon I am only able to see 3 symmetries, namely the identity, reflections through an axis from a vertex to the mid-point of the opposite side and a rotation of 2*pi/5. In terms of permutations of a pentagon with vertexes labelled 1,2,3,4,5 clockwise, this would be (identity), (23)(45) and (12345).

http://mathworld.wolfram.com/DihedralGroupD5.html" [Broken] says that there are 4 conjugacy classes, but I cannot see what the extra one must be. Any light shed on this would be a great help for me as I do not have a huge amount of in depth knowledge about group theory but I have a basic understanding of other groups, but cannot figure this one out.

Thanks.

Edit * I have been trying to put further thought into it and one possible reason I have thought of is if the reflections through different axes are defined as a rotation and then just a reflection. This isn't how I have done things for a triangle or a square though, but it would, I think, give an extra set of actions that would have a different order to just a reflection, or just a rotation where the order of a reflection would be 2 and the order of a rotation would be 5 but a rotation and then a flip would have an order of 10 to get back to the identity. Does this sound feasible or am I barking up the wrong tree?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Dihedral group D5 - Symmetry of a Pentagon - Conjugacy classes

Loading...

Similar Threads - Dihedral group Symmetry | Date |
---|---|

Subgroups of Symmetric and Dihedral groups | Jun 4, 2015 |

Quick question about subgroups of "odd" dihedral groups | Dec 3, 2014 |

Dihedral Group ##D_4## | Oct 30, 2014 |

Quick definition question: Dihedral group | Aug 8, 2012 |

How would one prove the dihedral group D_n is a group? | Feb 8, 2012 |

**Physics Forums - The Fusion of Science and Community**