Dimension of Eigenspace of A and A^T

  • Thread starter Thread starter potassium_mn04
  • Start date Start date
  • Tags Tags
    Dimension
AI Thread Summary
The discussion centers on the relationship between the dimensions of eigenspaces of a matrix A and its transpose A^T, emphasizing that the ranks of both matrices are equal. The eigenspace corresponding to an eigenvalue λ is defined as the nullspace of λI - A, with its dimension being the nullity of this expression. Participants suggest applying the rank-nullity theorem to establish the connection between the dimensions of the eigenspaces. Understanding this theorem is crucial for proving the equality of the dimensions. Overall, the conversation highlights the importance of the rank-nullity theorem in linear algebra.
potassium_mn04
Messages
1
Reaction score
0
Homework Statement
Prove that the dimension of the eigenspace of A and dimension of eigenspace of A^T are equal
Relevant Equations
dim(E_A)=dim(E_(At))
I know that the rank of A and A^T are equal, and that the statement follows from there, but I have no idea how to prove it.
 
Physics news on Phys.org
The eigenspace of ##A## corresponding to an eigenvalue ##\lambda## is the nullspace of ##\lambda I - A##. So, the dimension of that eigenspace is the nullity of ##\lambda I - A##. Are you familiar with the rank-nullity theorem? (If not, then look it up: Your book may call it differently.) You can apply that theorem here.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top