Dimension of Eigenspace of A and A^T

  • Thread starter Thread starter potassium_mn04
  • Start date Start date
  • Tags Tags
    Dimension
AI Thread Summary
The discussion centers on the relationship between the dimensions of eigenspaces of a matrix A and its transpose A^T, emphasizing that the ranks of both matrices are equal. The eigenspace corresponding to an eigenvalue λ is defined as the nullspace of λI - A, with its dimension being the nullity of this expression. Participants suggest applying the rank-nullity theorem to establish the connection between the dimensions of the eigenspaces. Understanding this theorem is crucial for proving the equality of the dimensions. Overall, the conversation highlights the importance of the rank-nullity theorem in linear algebra.
potassium_mn04
Messages
1
Reaction score
0
Homework Statement
Prove that the dimension of the eigenspace of A and dimension of eigenspace of A^T are equal
Relevant Equations
dim(E_A)=dim(E_(At))
I know that the rank of A and A^T are equal, and that the statement follows from there, but I have no idea how to prove it.
 
Physics news on Phys.org
The eigenspace of ##A## corresponding to an eigenvalue ##\lambda## is the nullspace of ##\lambda I - A##. So, the dimension of that eigenspace is the nullity of ##\lambda I - A##. Are you familiar with the rank-nullity theorem? (If not, then look it up: Your book may call it differently.) You can apply that theorem here.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top