MHB Dimension of the space of skew-symmetric bilinear functions

smile1
Messages
18
Reaction score
0
Hello everyone,

I stuck on this problem:
find the dimension of the space of dimension of the space of skew-symmetric bilinear functions on $V$ if $dimV=n$.

I thought in this way, for skew-symmetric bilinear functions, $f(u,v)=-f(v,u)$, then the dimension will be $n/2$

Am I right?

thanks
 
Physics news on Phys.org
Re: dimension of the space of skew-symmetric bilinear functions

smile said:
I thought in this way, for skew-symmetric bilinear functions, $f(u,v)=-f(v,u)$, then the dimension will be $n/2$
Do you think the space of skew-symmetric functions is a fractal when $s$ is odd? :)
Suppose $(e_1,\dots,e_n)$ is a basis of $V$, $u=\sum_{i=1}^nx_ie_i$ and $v=\sum_{i=1}^ny_ie_i$. Expand $f(u,v)$ using linearity and skew symmetry. If $x_i$ and $y_i$ are fixed, how many parameters do you need to set to get a concrete number for $f(u,v)$?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top