MHB Dimension of the space of skew-symmetric bilinear functions

Click For Summary
The discussion centers on determining the dimension of the space of skew-symmetric bilinear functions on a vector space V, where the dimension of V is n. It is proposed that the dimension of this space is n/2, based on the property of skew-symmetry, where f(u,v) = -f(v,u). A user suggests expanding f(u,v) using a basis and linearity to analyze the number of parameters needed for a concrete value. The conversation also briefly touches on whether the space of skew-symmetric functions could be considered fractal when the dimension is odd. The key focus remains on calculating the dimension of skew-symmetric bilinear functions.
smile1
Messages
18
Reaction score
0
Hello everyone,

I stuck on this problem:
find the dimension of the space of dimension of the space of skew-symmetric bilinear functions on $V$ if $dimV=n$.

I thought in this way, for skew-symmetric bilinear functions, $f(u,v)=-f(v,u)$, then the dimension will be $n/2$

Am I right?

thanks
 
Physics news on Phys.org
Re: dimension of the space of skew-symmetric bilinear functions

smile said:
I thought in this way, for skew-symmetric bilinear functions, $f(u,v)=-f(v,u)$, then the dimension will be $n/2$
Do you think the space of skew-symmetric functions is a fractal when $s$ is odd? :)
Suppose $(e_1,\dots,e_n)$ is a basis of $V$, $u=\sum_{i=1}^nx_ie_i$ and $v=\sum_{i=1}^ny_ie_i$. Expand $f(u,v)$ using linearity and skew symmetry. If $x_i$ and $y_i$ are fixed, how many parameters do you need to set to get a concrete number for $f(u,v)$?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
16K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K