- #1

- 345

- 15

## Main Question or Discussion Point

My linear algebra is a bit rusty.

Let ##A=\{\bar{v}_1, \dots, \bar{v}_1\}## be a set of vectors in ##R^n##. Can dim(span##(A))=n## without spanning ##R^n##?

I guess I'm unclear on how to interpret the dimension of the span of a set of vectors.

Let ##A=\{\bar{v}_1, \dots, \bar{v}_1\}## be a set of vectors in ##R^n##. Can dim(span##(A))=n## without spanning ##R^n##?

I guess I'm unclear on how to interpret the dimension of the span of a set of vectors.