- #1
nigelscott
- 135
- 4
I am looking at Appendix A Equation 52 (Loop Integrals and Dimensional Regularization) in Peskin and Schroeder's book.
∫ddk/(2π)d1/(k2 - Δ)2 = Γ(2-d/2)/(4π)2(1/Δ)2-d/2 = (1/4π)2(2/ε - logΔ - γ + log4π)
Can somebody explain how this equation is derived? I would also like to know what the equivalent expression is for integrals of the type 1/(k2 - m2) and k2/(k2 - m2)2. Thanks.
∫ddk/(2π)d1/(k2 - Δ)2 = Γ(2-d/2)/(4π)2(1/Δ)2-d/2 = (1/4π)2(2/ε - logΔ - γ + log4π)
Can somebody explain how this equation is derived? I would also like to know what the equivalent expression is for integrals of the type 1/(k2 - m2) and k2/(k2 - m2)2. Thanks.