Dimensionless value to differentiate between concentrated and dispersed

independentphysics
Messages
26
Reaction score
2
Homework Statement
Find a dimensionless value to differentiate between concentrated and dispersed mass systems
Relevant Equations
Newtonian mechanics
I want to find a dimensionless value that differentiates between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy. I assume spherical and radial symmetry, consider both the cases for point masses or smooth mass distributions.

The only value I can think of is the sum of multiplying each mass by its distance, but then I have to normalize this by some mass*distance to make it dimensionless.

Is there any other alternative?
 
Physics news on Phys.org
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
 
DaveC426913 said:
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
Hi Dave,

I need a dimensionless value based of physical parameters to differentiate between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy.

I do not understand your proposal. Although it is a dimensionless value, how can it be derived from physical parameters?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top