Let T be linear transformation from V to W. I know how to prove the result that nullity(T) = 0 if and only if T is an injective linear transformation.(adsbygoogle = window.adsbygoogle || []).push({});

Sketch of proof: If nullity(T) = 0, then ker(T) = {0}. So T(x) = T(y) --> T(x) - T(y) = 0 --> T(x-y) = 0 --> x-y = 0 --> x = y, which shows that T is injective. For the other direction, if T is injective, then then 0 must be the only element in the kernel, since it is always true for linear transformations that T(0) = 0, but since T is injective there is no other element in V that maps to the zero vector in W.

So there's the proof, but I still don't intuitively understand why the kernel only containing the zero vector means that T is injective, and vice versa. In contrast, the relation between the image of T and condition of being surjective is easy to see, since in order to map to all of the elements of W the image of T must have the same dimension as W. This can intuitively be seen with a diagram of the mapping from V to W, for example. I can't really imagine a diagram that plainly shows the injective condition.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I DimKer(T) = 0 <--> T is injective

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**