(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] Dirac delta function and Heaviside step function

In Levine's Quantum Chemistry textbook the Heaviside step function is defined as:

[tex]H(x-a)=1,x>a[/tex]

[tex]H(x-a)=0,x<a[/tex]

[tex]H(x-a)=\frac{1}{2},x=a[/tex]

Dirac delta function is:

[tex]\delta (x-a)=dH(x-a) / dx[/tex]

Now, the integral:

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx[/tex]

Is evaluated using integration by parts considering

[tex]u=f(x), du=f'(x)[/tex]

[tex]dv=\delta (x-a)dx, v=H(x-a)[/tex]

We have then:

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(x)H(x-a)|^{\infty}_{-\infty}-\int ^{\infty}_{-\infty}H(x-a)f'(x)dx[/tex]

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(\infty)-\int ^{\infty}_{-\infty}H(x-a)f'(x)dx[/tex]

Since [tex]H(x-a)[/tex] vanishes for [tex]x<a[/tex], the integral becomes:

[tex]\int ^{\infty}_{-\infty}f(x)\delta (x-a)dx=f(\infty)-\int ^{\infty}_{a}H(x-a)f'(x)dx=f(\infty)-\int ^{\infty}_{a}f'(x)dx[/tex]

This is the point where my question arrives. [tex]H(x-a)[/tex] is considered to have a value of unity for all the integral and that's why it is pulled out of the integral as a constant, however the lower bound of the integral is [tex]a[/tex] and in this point [tex]H(x-a)=1/2[/tex]. Could you please tell me if the following explanation is correct?

I think that because in all the integral, except in [tex]a[/tex], [tex]H(x-a)=1[/tex] and since the upper bound is infinity the value of the integral at the point [tex]a[/tex] can be ignored.

If I'm wrong, any suggestion for correcting my explanation will be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Dirac delta function and Heaviside step function

**Physics Forums | Science Articles, Homework Help, Discussion**