- #1
amjad-sh
- 246
- 13
- Homework Statement
- In fact, I'm working on deriving the equations included in a theoretical condensed matter physics paper.
I reached the part where the normal charge current density is represented by $$J_y^N(z<0)=-\sum_{\mathbf{p},k}2i\dfrac{e}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle\mu_L^x$$ and we need to prove that it is equal to ##\dfrac{-ek_f^2s}{(2\pi^2)}g(\nu,2k_fz)\triangle\mu_L^x##
It is not important to know what is normal charge current density, or other physical definitions I may mention Later in the post. Because I think knowing them will not serve in solving the problem.
- Relevant Equations
- ##g(\nu,2k_fz)## is a function.
We assume that ##\hbar=1## where ##\hbar## is the planck constant
##\varepsilon_{\mathbf{p},k}=\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}## is the energy corresponding to one particle and ##k_x##,##k_y## and ##k_z## are the momentum in x,y and z directions respectively.
##E_f=\dfrac{k_f^2}{2m}=##constant.
##\sum_{\mathbf p,k}##is the summation over all k's in the k-space.
##r_x=\dfrac{Ak_yk_z}{k_z+\sqrt{k_z^2-2mV})^2+c}##
##p_y=K_y##
##\delta(x)## is the dirac delta function.
Form solid state physics, we know that the volume of k-space per allowed k-value is ##\triangle{\mathbf{k}}=\dfrac{8\pi^3}{V}##
##\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{V}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
##\dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{1}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
When V##\rightarrow \infty \dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k}) \rightarrow \dfrac{1}{(2\pi)^3}\int F(\mathbf{k}) \, d\mathbf{k}##
Now ##-\sum_{\mathbf{p},k}\dfrac{2ie}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle{\mu_L^x} \rightarrow -\dfrac{1}{(2\pi)^3}\int F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z##
Where ##F(k_x,k_y,k_z)=\dfrac{2ie}{m}k_y\Bigg (\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)##
##\delta(\varepsilon_{p,k}-E_k)=\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})##
then$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z=$$
$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\dfrac{2ie}{m}k_y^2\Bigg (\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})\, dk_xdk_ydk_z$$
What is stopping me of completing the derivation is that how we can use ##\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})## to solve the integral?
I searched a lot in google to find an identity regarding this type of Dirac delta function, but I couldn't find anything.
##\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{V}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
##\dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{1}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
When V##\rightarrow \infty \dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k}) \rightarrow \dfrac{1}{(2\pi)^3}\int F(\mathbf{k}) \, d\mathbf{k}##
Now ##-\sum_{\mathbf{p},k}\dfrac{2ie}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle{\mu_L^x} \rightarrow -\dfrac{1}{(2\pi)^3}\int F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z##
Where ##F(k_x,k_y,k_z)=\dfrac{2ie}{m}k_y\Bigg (\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)##
##\delta(\varepsilon_{p,k}-E_k)=\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})##
then$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z=$$
$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\dfrac{2ie}{m}k_y^2\Bigg (\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})\, dk_xdk_ydk_z$$
What is stopping me of completing the derivation is that how we can use ##\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})## to solve the integral?
I searched a lot in google to find an identity regarding this type of Dirac delta function, but I couldn't find anything.