I Dirac Notation for Operators: Ambiguity in Expectation Values?

dyn
Messages
774
Reaction score
63
Hi
If A is a linear operator but not Hermitian then the expectation value of A2 is written as < ψ | A2| ψ >. Now if i write A2 as AA then i have seen the expectation value written as < ψ | A+A| ψ > but if i only apply the operators to the ket , then could i not write it as < ψ | AA | ψ > ? In other words is the notation slightly ambiguous ?
Thanks
 
Physics news on Phys.org
dyn said:
Hi
If A is a linear operator but not Hermitian then the expectation value of A2 is written as < ψ | A2| ψ >. Now if i write A2 as AA then i have seen the expectation value written as < ψ | A+A| ψ > but if i only apply the operators to the ket , then could i not write it as < ψ | AA | ψ > ? In other words is the notation slightly ambiguous ?
Thanks
If A is not Hermitian, then ##AA \neq A^{\dagger} A##, so you can't write it that way.

-Dan
 
I might be confusing myself here but if A is not Hermitian and A2 = AA and A3 = AAA then how do i write the expectation values of these 2 quantities ?
 
dyn said:
I might be confusing myself here but if A is not Hermitian and A2 = AA and A3 = AAA then how do i write the expectation values of these 2 quantities ?
The same way you did in the OP:
##\langle A^2 \rangle = \langle \psi \mid A^2 \mid \psi \rangle \equiv \langle \psi \mid AA \mid \psi \rangle##

You would have to calculate ##\mid \phi \rangle = A \mid \psi \rangle##, then ##\mid \zeta \rangle = A \mid \phi \rangle##, then finally ##\langle \psi \mid \zeta \rangle##.

That's as far as you can go until you specify what the operator A looks like.

-Dan
 
  • Like
Likes malawi_glenn and dyn
topsquark said:
The same way you did in the OP:
##\langle A^2 \rangle = \langle \psi \mid A^2 \mid \psi \rangle \equiv \langle \psi \mid AA \mid \psi \rangle##

You would have to calculate ##\mid \phi \rangle = A \mid \psi \rangle##, then ##\mid \zeta \rangle = A \mid \phi \rangle##, then finally ##\langle \psi \mid \zeta \rangle##.

That's as far as you can go until you specify what the operator A looks like.

-Dan
Alternatively, you can calculate
$$
\begin{align*}
\ket{\phi} &= A \ket{\psi} \\
\ket{\chi} &= A^\dagger \ket{\psi} \\
\braket{\psi | A^2 | \psi} &= \braket{\chi| \phi}
\end{align*}
$$
 
  • Like
Likes topsquark and malawi_glenn
dyn said:
I might be confusing myself here but if A is not Hermitian and A2 = AA and A3 = AAA then how do i write the expectation values of these 2 quantities ?
For a pure state, represented by a normalized vector ##|\Psi \rangle## expectation value is
$$\langle f(\hat{A}) = \langle \Psi|f(\hat{A}) \Psi \rangle=\langle f(\hat{A})^{\dagger} \Psi|\Psi \rangle,$$
for an arbitrary function ##f(\hat{A})##. It doesn't matter whether the operator is self-adjoint or not for the identity of the two expressions. Of course, such an operator cannot represent an observable to begin with, and you might argue that it doesn't make sense to call this expression an "expectation value" in the first place.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top