Ali 2
- 22
- 1
The Dirac detla or unit impulse function is defined as :
\delta (t) = \left \{ \begin {matrix} \infty \quad \ t = 0 \\ 0 \quad : \ t \neq 0 \end{matrix}
and the unit step function :
u(t) = \left \{ \begin {matrix} 1 \quad \ t \geqslant 0 \\ 0 \quad : \ t < 0 \end{matrix}
It is said that the
\frac d {dt} u(t) = \delta (t) [/itex] ..<br /> <br /> but .. if we came to the definition of the derivative , we should find the limit from left and right .. :<br /> <br /> { \displaysytle u&#039;_+ (0) = \lim { h \to 0^+ } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^+ } \frac {1-1} h = 0 }<br /> <br /> { \displaystyle u&#039;_- (0) = \lim { h \to 0^- } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^- } \frac {0-1 }h = \infty}<br /> <br /> We see that the derivative is infinity from left only .. and it is not equal to the right limit , so the derivative doesn't exist .. and it is not an imuplse ..<br /> <br /> But <b>IF</b> we define u (0) to be between 0 and 1 , For instance 0.5 , then :<br /> <br /> u&#039;_+ (0) = \lim { h \to 0^+ } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^+ } \frac {1-0.5} h = \infty<br /> <br /> Which makes the derivative from both sides infinity , which gives us the impulse ..<br /> <br /> As a result , we should chane the definition of the unit step function .. <br /> <br /> Do you agree with me ?
\delta (t) = \left \{ \begin {matrix} \infty \quad \ t = 0 \\ 0 \quad : \ t \neq 0 \end{matrix}
and the unit step function :
u(t) = \left \{ \begin {matrix} 1 \quad \ t \geqslant 0 \\ 0 \quad : \ t < 0 \end{matrix}
It is said that the
\frac d {dt} u(t) = \delta (t) [/itex] ..<br /> <br /> but .. if we came to the definition of the derivative , we should find the limit from left and right .. :<br /> <br /> { \displaysytle u&#039;_+ (0) = \lim { h \to 0^+ } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^+ } \frac {1-1} h = 0 }<br /> <br /> { \displaystyle u&#039;_- (0) = \lim { h \to 0^- } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^- } \frac {0-1 }h = \infty}<br /> <br /> We see that the derivative is infinity from left only .. and it is not equal to the right limit , so the derivative doesn't exist .. and it is not an imuplse ..<br /> <br /> But <b>IF</b> we define u (0) to be between 0 and 1 , For instance 0.5 , then :<br /> <br /> u&#039;_+ (0) = \lim { h \to 0^+ } \frac { u (0 + h ) - u (0) } h = \lim { h \to 0^+ } \frac {1-0.5} h = \infty<br /> <br /> Which makes the derivative from both sides infinity , which gives us the impulse ..<br /> <br /> As a result , we should chane the definition of the unit step function .. <br /> <br /> Do you agree with me ?
Last edited: