Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Directional derivatives and the gradient vector

  1. Oct 15, 2014 #1
    If the unit vector u makes an angle theta with the positive x axis then we can write u = <cos theta, sin theta>

    Duf(x, y) = fx(x,y) cos theta + fy(x,y) sin theta

    What if I am dealing with a function with three variables (x, y, z)?

    How can I find the directional derivative if I have been given an angle?
  2. jcsd
  3. Oct 15, 2014 #2


    User Avatar
    Science Advisor
    Gold Member

    In three dimensions, a unit vector will be distinguished by 2 angles. It could be a polar angle ##\theta## and an azimuthal angle ##\phi## or some other two numbers to define a direction (sometimes the designation is flipped). In spherical polar coordinates a unit vector will be ##\hat{u}=(\sin\phi\cos\theta,\sin\phi\cos\phi,\sin\phi)##
  4. Oct 15, 2014 #3
    How should I approach this question?

    Find the directional derivative of f(x,y,z)=xz+y2 at the point (3,1,2) in the direction of a vector making an angle of −π/4 with ∇f(3,1,2).

    I found the gradient to be <2,2,3>
  5. Oct 15, 2014 #4


    User Avatar
    Science Advisor
    Gold Member

    I don't understand what it means: "a vector making an angle of −π/4 with ∇f(3,1,2)."? In 3-D space, there are an infinity of vectors making a specific angle with respect to another vector...they form a cone.
  6. Oct 15, 2014 #5
    Is there a way to obtain a vector (out of many)?
  7. Oct 16, 2014 #6
    You do not have to think about angles to understand the idea of a directional derivative. Let x and v be in Rn, v be a unit vector and t in R . The directional derivative of f at a in the direction v is just the derivative of the single variable function h(t) = f(a + tv) at t=0 (that is h'(0) ).

    This gives the definition of the directional derivative without discussing the gradient. And in fact some directional derivatives can exist without f having a defined gradient. Say f is differentible with respect to x but not with respect to y. However if f is differentible then the direction derivative of f at a in the direction v is grad(f)(a)*v.
  8. Oct 16, 2014 #7


    User Avatar
    Science Advisor

    Given function f(x, y, z), with gradient [itex]\nabla f[/itex], we can talk about the "directional derivative" in the direction of unit vector [itex]\vec{v}[/itex] as the dot product: [itex]\nabla f\cdot \vec{v}[/itex].

    In three dimensions, a direction cannot be specified by a single angle. We need two angles such as the "[itex]\theta[/itex]" and "[itex]\phi[/itex]" used in spherical coordinates. Or we can use the "direction cosines", the cosines of the angles the direction makes with the three coordinate axes: [itex]\theta_x[/itex] is the angle a line in the given direction makes with the x-axis, [itex]\theta_y[/itex] the angle it makes with the y-axis, and [itex]\theta_z[/itex], the angle it makes with the z-axis. Of course, those three angles are not idependent. We can show that we must have [itex]cos^2(\theta_x)+ cos^2(\theta_y)+ cos^2(\theta_z)= 1[/itex] which means that the vector [itex] cos(\theta_x)\vec{i}+ cos(\theta_y)\vec{j}+ cos(\theta_z)\vec{k}[/itex] is the unit vector in that direction.

    That is, the "directional derivative" of f(x, y, z) in the direction that makes angles [itex]\theta_x[/itex], [itex]\theta_y[/itex], and [itex]\theta_z[/itex] with the x, y, and z axes, respectively, is given by [itex]\nabla f\cdot (cos(\theta_x)\vec{i}+ cos(\theta_y)\vec{j}+ cos(\theta_z)\vec{k})= f_x cos(\theta_x)+ f_y cos(\theta_y)+ f_z cos(\theta_z)[/itex].
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook