Discrepancies In Clebsch–Gordan Calculations (Dipole Transitions)

  • Thread starter Thread starter flyusx
  • Start date Start date
flyusx
Messages
63
Reaction score
10
Homework Statement
Calculate the dipole transitions $$\langle n',l',m'|\textbf{r}|n,l,m\rangle$$
Relevant Equations
$$\langle l',m'|Y_{1q}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l',0\rangle\langle l,1;m,q|l',m'\rangle$$
A table of Clebsch–Gordan relations is hyperlinked below (table B.2)
This is a solved problem from Zettili Chapter 7 Problem 7.8(b) but I am having troubles reproducing some of the quantities he produces. Zettili approaches this problem by describing ##\textbf{r}## using a spherical basis: a product between a radial and angular part $$r_{q}=\sqrt{\frac{4\pi}{3}}rY_{1q}(\theta,\phi)\quad\quad q=1,0,-1$$. The dipole term can be rewritten as $$\sqrt{\frac{4\pi}{3}}\langle n',l'|r_{q}|n,l\rangle\langle l',m'|Y_{1q}|l,m\rangle$$ where the radial part can be calculated from an integral (I have no problem with this) and the angular part can be resolved as follows. Since ##m'=m+q## then ##m'=m,m-1,m+1## and since ##\vert l_{1}-l_{2}\vert\leq l'\leq l_{1}+l_{2}## then ##l'=l,l-1,l+1##. The parity selection rule erases all ##l'=l## so there are just six angular terms to focus on. $$l'=l+1,m'=m+1$$ $$l'=l-1,m'=m+1$$ $$l'=l+1,m'=m$$ $$l'=l-1,m'=m$$ $$l'=l+1,m'=m-1$$ $$l'=l-1,m'=m-1$$
He refers to the 'relevant Clebsch–Gordan coefficients from standard tables' which from an internet search, I have found Table B.2 of this pdf. It concerns Clebsch–Gordan coefficients for ##j_{2}=1## and ##m_{2}=1,0,-1##.

Out of the six terms, my work differs from Zettili's solution on two of them. For instance, I take
$$\langle l-1,m+1|Y_{11}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l-1,0\rangle\langle l,1;m,1|l-1,m+1\rangle$$
The square root coefficient is $$\sqrt{\frac{3(2l+1)}{4\pi(2(l-1)+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The centre term (the first CG coefficient) is calculated in Table B.2 within the cell bordered by ##m_{2}=0## and ##j-j_{1}=-1## which states
$$\langle j_1,1;m-m_2,m_2|j,m\rangle=-\sqrt{\frac{(j_1-m)(j_1+m)}{j_1(2j+1)}}$$
Where plugging in ##j_1=l##, ##m=0## and ##j=l-1## gives $$\langle l,1;0,0|l-1,0\rangle=\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^2}{l(2l+1)}}$$
The last term is found in Table B.2 cell ##j-j_1=-1## and ##m_2=1## where $$\langle j_1,1;m-m_2,m_2|j,m\rangle=\sqrt{\frac{(j_1-m+1)(j_1-m)}{2j_1(2j_1+1)}}$$
So the associated CG term is
$$\langle l,1;m,1|l-1,m+1\rangle=\sqrt{\frac{(l-m)(l-m-1)}{2l(2l+1)}}$$
Therefore $$\langle l-1,m+1|Y_{11}|l,m\rangle=-\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}\sqrt{\frac{l^2}{l(2l+1)}}\sqrt{\frac{(l-m-1)(l-m)}{2l(2l+1)}}=-\sqrt{\frac{3(l-m)(l-m-1)}{8\pi(2l+1)(2l-1)}}$$
However, Zettili replaces ##2l-1## in the denominator with ##2l+3## and loses the negative sign.

I have a similar issue for ##\langle l-1,m-1|Y_{1-1}|l,m\rangle## where ##l'=l-1## and ##m'=m-1## where ##q=-1##. The square root is $$\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The first CG term is in cell ##j-j_1=-1## and ##m_2=0## which gives $$\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^{2}}{l(2l+1)}}$$
The other CG term is in cell ##j-j_1=-1## and ##m_2=-1## which gives $$\langle l,1;m,-1|l-1,m-1\rangle=\sqrt{\frac{(l+m)(l+m-1)}{2l(2l+1)}}$$
Multiplying these terms together, I get $$\langle l-1,m-1|Y_{1-1}|l,m\rangle=-\sqrt{\frac{3(l+m)(l+m-1)}{8\pi(2l-1)(2l+1)}}$$
Which differs from Zettili's solution by exactly a negative sign.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top