Discrepancies In Clebsch–Gordan Calculations (Dipole Transitions)

  • Thread starter Thread starter flyusx
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion addresses discrepancies in Clebsch–Gordan calculations related to dipole transitions as presented in Zettili's "Quantum Mechanics" (Chapter 7, Problem 7.8(b)). The user encounters issues reproducing specific quantities, particularly in the angular terms involving spherical harmonics and Clebsch–Gordan coefficients. Key calculations involve the terms $$\langle l-1,m+1|Y_{11}|l,m\rangle$$ and $$\langle l-1,m-1|Y_{1-1}|l,m\rangle$$, where the user identifies errors in Zettili's results, specifically in the denominator and sign of the coefficients. The discussion emphasizes the importance of correctly applying the Clebsch–Gordan coefficients from standard tables, particularly Table B.2.

PREREQUISITES
  • Understanding of Clebsch–Gordan coefficients
  • Familiarity with spherical harmonics and their properties
  • Knowledge of dipole transitions in quantum mechanics
  • Proficiency in quantum mechanics as outlined in Zettili's textbook
NEXT STEPS
  • Review the derivation of Clebsch–Gordan coefficients in quantum mechanics
  • Study the properties and applications of spherical harmonics in quantum systems
  • Examine the parity selection rules in dipole transitions
  • Explore advanced topics in quantum mechanics related to angular momentum coupling
USEFUL FOR

Quantum mechanics students, physicists specializing in atomic and molecular physics, and researchers working on dipole transitions and angular momentum coupling in quantum systems.

flyusx
Messages
64
Reaction score
10
Homework Statement
Calculate the dipole transitions $$\langle n',l',m'|\textbf{r}|n,l,m\rangle$$
Relevant Equations
$$\langle l',m'|Y_{1q}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l',0\rangle\langle l,1;m,q|l',m'\rangle$$
A table of Clebsch–Gordan relations is hyperlinked below (table B.2)
This is a solved problem from Zettili Chapter 7 Problem 7.8(b) but I am having troubles reproducing some of the quantities he produces. Zettili approaches this problem by describing ##\textbf{r}## using a spherical basis: a product between a radial and angular part $$r_{q}=\sqrt{\frac{4\pi}{3}}rY_{1q}(\theta,\phi)\quad\quad q=1,0,-1$$. The dipole term can be rewritten as $$\sqrt{\frac{4\pi}{3}}\langle n',l'|r_{q}|n,l\rangle\langle l',m'|Y_{1q}|l,m\rangle$$ where the radial part can be calculated from an integral (I have no problem with this) and the angular part can be resolved as follows. Since ##m'=m+q## then ##m'=m,m-1,m+1## and since ##\vert l_{1}-l_{2}\vert\leq l'\leq l_{1}+l_{2}## then ##l'=l,l-1,l+1##. The parity selection rule erases all ##l'=l## so there are just six angular terms to focus on. $$l'=l+1,m'=m+1$$ $$l'=l-1,m'=m+1$$ $$l'=l+1,m'=m$$ $$l'=l-1,m'=m$$ $$l'=l+1,m'=m-1$$ $$l'=l-1,m'=m-1$$
He refers to the 'relevant Clebsch–Gordan coefficients from standard tables' which from an internet search, I have found Table B.2 of this pdf. It concerns Clebsch–Gordan coefficients for ##j_{2}=1## and ##m_{2}=1,0,-1##.

Out of the six terms, my work differs from Zettili's solution on two of them. For instance, I take
$$\langle l-1,m+1|Y_{11}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l-1,0\rangle\langle l,1;m,1|l-1,m+1\rangle$$
The square root coefficient is $$\sqrt{\frac{3(2l+1)}{4\pi(2(l-1)+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The centre term (the first CG coefficient) is calculated in Table B.2 within the cell bordered by ##m_{2}=0## and ##j-j_{1}=-1## which states
$$\langle j_1,1;m-m_2,m_2|j,m\rangle=-\sqrt{\frac{(j_1-m)(j_1+m)}{j_1(2j+1)}}$$
Where plugging in ##j_1=l##, ##m=0## and ##j=l-1## gives $$\langle l,1;0,0|l-1,0\rangle=\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^2}{l(2l+1)}}$$
The last term is found in Table B.2 cell ##j-j_1=-1## and ##m_2=1## where $$\langle j_1,1;m-m_2,m_2|j,m\rangle=\sqrt{\frac{(j_1-m+1)(j_1-m)}{2j_1(2j_1+1)}}$$
So the associated CG term is
$$\langle l,1;m,1|l-1,m+1\rangle=\sqrt{\frac{(l-m)(l-m-1)}{2l(2l+1)}}$$
Therefore $$\langle l-1,m+1|Y_{11}|l,m\rangle=-\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}\sqrt{\frac{l^2}{l(2l+1)}}\sqrt{\frac{(l-m-1)(l-m)}{2l(2l+1)}}=-\sqrt{\frac{3(l-m)(l-m-1)}{8\pi(2l+1)(2l-1)}}$$
However, Zettili replaces ##2l-1## in the denominator with ##2l+3## and loses the negative sign.

I have a similar issue for ##\langle l-1,m-1|Y_{1-1}|l,m\rangle## where ##l'=l-1## and ##m'=m-1## where ##q=-1##. The square root is $$\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The first CG term is in cell ##j-j_1=-1## and ##m_2=0## which gives $$\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^{2}}{l(2l+1)}}$$
The other CG term is in cell ##j-j_1=-1## and ##m_2=-1## which gives $$\langle l,1;m,-1|l-1,m-1\rangle=\sqrt{\frac{(l+m)(l+m-1)}{2l(2l+1)}}$$
Multiplying these terms together, I get $$\langle l-1,m-1|Y_{1-1}|l,m\rangle=-\sqrt{\frac{3(l+m)(l+m-1)}{8\pi(2l-1)(2l+1)}}$$
Which differs from Zettili's solution by exactly a negative sign.
 
Last edited:
  • Like
Likes   Reactions: Yael129

Similar threads

Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 20 ·
Replies
20
Views
5K
Replies
17
Views
3K
Replies
10
Views
3K
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K