Discrepancies In Clebsch–Gordan Calculations (Dipole Transitions)

  • Thread starter Thread starter flyusx
  • Start date Start date
flyusx
Messages
63
Reaction score
10
Homework Statement
Calculate the dipole transitions $$\langle n',l',m'|\textbf{r}|n,l,m\rangle$$
Relevant Equations
$$\langle l',m'|Y_{1q}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l',0\rangle\langle l,1;m,q|l',m'\rangle$$
A table of Clebsch–Gordan relations is hyperlinked below (table B.2)
This is a solved problem from Zettili Chapter 7 Problem 7.8(b) but I am having troubles reproducing some of the quantities he produces. Zettili approaches this problem by describing ##\textbf{r}## using a spherical basis: a product between a radial and angular part $$r_{q}=\sqrt{\frac{4\pi}{3}}rY_{1q}(\theta,\phi)\quad\quad q=1,0,-1$$. The dipole term can be rewritten as $$\sqrt{\frac{4\pi}{3}}\langle n',l'|r_{q}|n,l\rangle\langle l',m'|Y_{1q}|l,m\rangle$$ where the radial part can be calculated from an integral (I have no problem with this) and the angular part can be resolved as follows. Since ##m'=m+q## then ##m'=m,m-1,m+1## and since ##\vert l_{1}-l_{2}\vert\leq l'\leq l_{1}+l_{2}## then ##l'=l,l-1,l+1##. The parity selection rule erases all ##l'=l## so there are just six angular terms to focus on. $$l'=l+1,m'=m+1$$ $$l'=l-1,m'=m+1$$ $$l'=l+1,m'=m$$ $$l'=l-1,m'=m$$ $$l'=l+1,m'=m-1$$ $$l'=l-1,m'=m-1$$
He refers to the 'relevant Clebsch–Gordan coefficients from standard tables' which from an internet search, I have found Table B.2 of this pdf. It concerns Clebsch–Gordan coefficients for ##j_{2}=1## and ##m_{2}=1,0,-1##.

Out of the six terms, my work differs from Zettili's solution on two of them. For instance, I take
$$\langle l-1,m+1|Y_{11}|l,m\rangle=\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}\langle l,1;0,0|l-1,0\rangle\langle l,1;m,1|l-1,m+1\rangle$$
The square root coefficient is $$\sqrt{\frac{3(2l+1)}{4\pi(2(l-1)+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The centre term (the first CG coefficient) is calculated in Table B.2 within the cell bordered by ##m_{2}=0## and ##j-j_{1}=-1## which states
$$\langle j_1,1;m-m_2,m_2|j,m\rangle=-\sqrt{\frac{(j_1-m)(j_1+m)}{j_1(2j+1)}}$$
Where plugging in ##j_1=l##, ##m=0## and ##j=l-1## gives $$\langle l,1;0,0|l-1,0\rangle=\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^2}{l(2l+1)}}$$
The last term is found in Table B.2 cell ##j-j_1=-1## and ##m_2=1## where $$\langle j_1,1;m-m_2,m_2|j,m\rangle=\sqrt{\frac{(j_1-m+1)(j_1-m)}{2j_1(2j_1+1)}}$$
So the associated CG term is
$$\langle l,1;m,1|l-1,m+1\rangle=\sqrt{\frac{(l-m)(l-m-1)}{2l(2l+1)}}$$
Therefore $$\langle l-1,m+1|Y_{11}|l,m\rangle=-\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}\sqrt{\frac{l^2}{l(2l+1)}}\sqrt{\frac{(l-m-1)(l-m)}{2l(2l+1)}}=-\sqrt{\frac{3(l-m)(l-m-1)}{8\pi(2l+1)(2l-1)}}$$
However, Zettili replaces ##2l-1## in the denominator with ##2l+3## and loses the negative sign.

I have a similar issue for ##\langle l-1,m-1|Y_{1-1}|l,m\rangle## where ##l'=l-1## and ##m'=m-1## where ##q=-1##. The square root is $$\sqrt{\frac{3(2l+1)}{4\pi(2l'+1)}}=\sqrt{\frac{3(2l+1)}{4\pi(2l-1)}}$$
The first CG term is in cell ##j-j_1=-1## and ##m_2=0## which gives $$\langle l,1;0,0|l-1,0\rangle=-\sqrt{\frac{l^{2}}{l(2l+1)}}$$
The other CG term is in cell ##j-j_1=-1## and ##m_2=-1## which gives $$\langle l,1;m,-1|l-1,m-1\rangle=\sqrt{\frac{(l+m)(l+m-1)}{2l(2l+1)}}$$
Multiplying these terms together, I get $$\langle l-1,m-1|Y_{1-1}|l,m\rangle=-\sqrt{\frac{3(l+m)(l+m-1)}{8\pi(2l-1)(2l+1)}}$$
Which differs from Zettili's solution by exactly a negative sign.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top