MHB Discrete Probability Distribution Tables Skills

Click For Summary
The discussion focuses on constructing discrete probability distribution tables for a fair six-sided die and analyzing results from a dice simulator. In Part I, participants are tasked with calculating the mean, variance, and standard deviation for the theoretical probabilities of the die. Part II involves creating a distribution table from simulated rolls and performing similar calculations. The comparison reveals minor differences between classical and empirical probabilities, with the largest discrepancy being -0.05 for the value of 1, attributed to the small sample size in the simulation. Overall, the empirical results closely align with theoretical expectations, indicating the simulator's accuracy.
drumsticksss
Messages
1
Reaction score
0
A problem i made up for some of my friends who need help with discrete distributions tables. Can you do it?
Dice Generator
Part I:
1. Construct a discrete probability distribution table for a fair six-sided dice. (Round according to example)
2. Calculate the mean, variance, and standard deviation based on the probability distribution.

Part II
A dice simulator was used to “roll” sixty six-sided dice. The results are provided below.
2 4 2 4 3 1
4 3 3 1 5 5
6 2 2 1 1 4
4 4 3 1 5 6
1 2 3 2 5 2
1 4 1 5 1 6
5 4 2 3 2 4
6 4 1 4 5 1
3 6 3 3 4 1
6 6 2 1 2 3


1. Construct a discrete probability distribution table based on the data from the simulator. (Round according to example)

2. Calculate the mean, variance, and standard deviation based on the data.

3. Compare the classical probabilities from Part I with the empirical probabilities from Part II. What are the differences in the probabilities for each possible value? Make a table displaying the differences.
Part Ix p(x) x*p(x) x (x-µ)2 (x-µ)2*p(x)
1 0.1667 0.1667 -2.5007 6.2535 1.042
2
3
4
5
6
∑x*p(x) = ∑(x-µ)2*p(x)=Part II
x p(x) x*p(x) x-µ (x-µ)2 (x-µ)2*p(x)
1 0.2167 0.2167 -2.1671 4.6963 1.018
2
3
4
5
6
∑x*p(x)= ∑(x-µ)2*p(x)=Differences:

x Classical (Part I) Empirical (PartII) Differences
1 0.1667 0.2167 -0.05
2
3
4
5
6
 
Mathematics news on Phys.org

∑p(x)= ∑p(x)=

The differences in probabilities between the classical and empirical data are small, with the largest difference being -0.05 for the value of 1. This could be due to the small sample size in Part II compared to the theoretical probabilities calculated in Part I. However, overall, the empirical probabilities are close to the theoretical probabilities, indicating that the dice simulator is producing fairly accurate results.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
48
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
2
Views
4K
Replies
5
Views
1K