MHB Discrete Probability Distribution Tables Skills

drumsticksss
Messages
1
Reaction score
0
A problem i made up for some of my friends who need help with discrete distributions tables. Can you do it?
Dice Generator
Part I:
1. Construct a discrete probability distribution table for a fair six-sided dice. (Round according to example)
2. Calculate the mean, variance, and standard deviation based on the probability distribution.

Part II
A dice simulator was used to “roll” sixty six-sided dice. The results are provided below.
2 4 2 4 3 1
4 3 3 1 5 5
6 2 2 1 1 4
4 4 3 1 5 6
1 2 3 2 5 2
1 4 1 5 1 6
5 4 2 3 2 4
6 4 1 4 5 1
3 6 3 3 4 1
6 6 2 1 2 3


1. Construct a discrete probability distribution table based on the data from the simulator. (Round according to example)

2. Calculate the mean, variance, and standard deviation based on the data.

3. Compare the classical probabilities from Part I with the empirical probabilities from Part II. What are the differences in the probabilities for each possible value? Make a table displaying the differences.
Part Ix p(x) x*p(x) x (x-µ)2 (x-µ)2*p(x)
1 0.1667 0.1667 -2.5007 6.2535 1.042
2
3
4
5
6
∑x*p(x) = ∑(x-µ)2*p(x)=Part II
x p(x) x*p(x) x-µ (x-µ)2 (x-µ)2*p(x)
1 0.2167 0.2167 -2.1671 4.6963 1.018
2
3
4
5
6
∑x*p(x)= ∑(x-µ)2*p(x)=Differences:

x Classical (Part I) Empirical (PartII) Differences
1 0.1667 0.2167 -0.05
2
3
4
5
6
 
Mathematics news on Phys.org

∑p(x)= ∑p(x)=

The differences in probabilities between the classical and empirical data are small, with the largest difference being -0.05 for the value of 1. This could be due to the small sample size in Part II compared to the theoretical probabilities calculated in Part I. However, overall, the empirical probabilities are close to the theoretical probabilities, indicating that the dice simulator is producing fairly accurate results.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top