MHB Discrete Probability Distribution Tables Skills

AI Thread Summary
The discussion focuses on constructing discrete probability distribution tables for a fair six-sided die and analyzing results from a dice simulator. In Part I, participants are tasked with calculating the mean, variance, and standard deviation for the theoretical probabilities of the die. Part II involves creating a distribution table from simulated rolls and performing similar calculations. The comparison reveals minor differences between classical and empirical probabilities, with the largest discrepancy being -0.05 for the value of 1, attributed to the small sample size in the simulation. Overall, the empirical results closely align with theoretical expectations, indicating the simulator's accuracy.
drumsticksss
Messages
1
Reaction score
0
A problem i made up for some of my friends who need help with discrete distributions tables. Can you do it?
Dice Generator
Part I:
1. Construct a discrete probability distribution table for a fair six-sided dice. (Round according to example)
2. Calculate the mean, variance, and standard deviation based on the probability distribution.

Part II
A dice simulator was used to “roll” sixty six-sided dice. The results are provided below.
2 4 2 4 3 1
4 3 3 1 5 5
6 2 2 1 1 4
4 4 3 1 5 6
1 2 3 2 5 2
1 4 1 5 1 6
5 4 2 3 2 4
6 4 1 4 5 1
3 6 3 3 4 1
6 6 2 1 2 3


1. Construct a discrete probability distribution table based on the data from the simulator. (Round according to example)

2. Calculate the mean, variance, and standard deviation based on the data.

3. Compare the classical probabilities from Part I with the empirical probabilities from Part II. What are the differences in the probabilities for each possible value? Make a table displaying the differences.
Part Ix p(x) x*p(x) x (x-µ)2 (x-µ)2*p(x)
1 0.1667 0.1667 -2.5007 6.2535 1.042
2
3
4
5
6
∑x*p(x) = ∑(x-µ)2*p(x)=Part II
x p(x) x*p(x) x-µ (x-µ)2 (x-µ)2*p(x)
1 0.2167 0.2167 -2.1671 4.6963 1.018
2
3
4
5
6
∑x*p(x)= ∑(x-µ)2*p(x)=Differences:

x Classical (Part I) Empirical (PartII) Differences
1 0.1667 0.2167 -0.05
2
3
4
5
6
 
Mathematics news on Phys.org

∑p(x)= ∑p(x)=

The differences in probabilities between the classical and empirical data are small, with the largest difference being -0.05 for the value of 1. This could be due to the small sample size in Part II compared to the theoretical probabilities calculated in Part I. However, overall, the empirical probabilities are close to the theoretical probabilities, indicating that the dice simulator is producing fairly accurate results.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top