MHB Discrete valuation Ring which is a subring of a field K Problem

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am stuck in the middle of a proof. Here is the background information from Dummit and Foote Abstract Algebra 2nd ed.:

Let $K$ be a field. A discrete valuation on $K$ on a function $\nu$: $K^{\times} \to \Bbb{Z}$ satisfying
  1. $\nu(a\cdot b)=\nu(a)+\nu(b)$ [i.e. $\nu$ is a homomorphism from the multiplication group of nonzero elements of $K$ to $\Bbb{Z}$]
  2. $\nu$ is surjective, and
  3. $\nu(x+y)\ge \min{[\nu(x),\nu(y)]}$, for all $x,y\in K^{\times}$ with $x+y\ne 0$
The set $R=\left\{x\in K^{\times}| \nu(x)\ge 0\right\} \cup \left\{0\right\}$.

The definition from the book for a subring of ring $P$ (in general) states is a subgroup of $P$ that is closed under multiplication.

Prove $R$ is a subring of $K$ which contains the identity.

Here is my work:

Proof: Since $1\in K$, then $1\in R$ due to the fact that $\nu(1)\ge 0$. Let $a,b\in R$. Then $\nu(a\cdot b^{-1})=\nu(a)+\nu(b^{-1})=\nu(a)+{\nu(b)}^{-1}\ge 0$ (here is where I am stuck).Thanks,
Cbarker1
 
Last edited:
Physics news on Phys.org
Hi Cbarker1,

It is important to note that a subring of a ring is an additive subgroup. Here, we must show that (1) $R$ contains $0$, (2) $R$ is closed under subtraction, and (3) $R$ is closed under multiplication. Claim (1) is trivial by definition of $R$. For claim (2), use the fact that $\nu(a - b) \ge \min\{\nu(a), \nu(-b)\}$ if $a \neq b$ and $\nu(-b) = \nu(b)$. For claim (3), consider that $\nu(ab) = \nu(a) + \nu(b) \ge 0$ provided $\nu(a) \ge 0$ and $\nu(b) \ge 0$.
 
Euge said:
Hi Cbarker1,

It is important to note that a subring of a ring is an additive subgroup. Here, we must show that (1) $R$ contains $0$, (2) $R$ is closed under subtraction, and (3) $R$ is closed under multiplication. Claim (1) is trivial by definition of $R$. For claim (2), use the fact that $\nu(a - b) \ge \min\{\nu(a), \nu(-b)\}$ if $a \neq b$ and $\nu(-b) = \nu(b)$. For claim (3), consider that $\nu(ab) = \nu(a) + \nu(b) \ge 0$ provided $\nu(a) \ge 0$ and $\nu(b) \ge 0$.
Claim (2) (WTS:$a-b \in R$): Let $a,b \in R$. Then $\nu(a-b) \ge \min\{\nu(a),\nu(-b)\}\ge \min\{\nu(a),\nu(b)\}\ge 0$ provided that $a\ne b$. Thus, $a-b\in R$.
is this the right direction of the proof?

thanks
Cbarker1
 
Last edited:
You're on the right track, but to make the argument precise, suppose, without loss of generality, that both $a$ and $b$ are nonzero (since $x \in R \implies -x \in R$) and $a \neq b$ (or else the statement $a - b \in R$ is immediate). Then since $a, b\in R$, $\nu(a) \ge 0$ and $\nu(b) \ge 0$, so that $\nu(a - b) \ge \min\{\nu(a), \nu(-b)\} = \min\{\nu(a),\nu(b)\} \ge 0$. Hence $a - b\in R$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top