Dispersion Relation in Different Media

Click For Summary
SUMMARY

The discussion centers on the dispersion relation for electromagnetic waves, specifically the equation \( |\vec k|^2 = \frac {n^2 \omega^2}{c^2} \), derived from Maxwell's equations. It contrasts this with classical wave equations, highlighting the assumption of non-dispersion in classical physics. The conversation clarifies that while the wave equation applies to both dispersive and non-dispersive media, the dispersion relation is fundamentally different for each, as dispersion refers to frequency-dependent material properties, not merely the wave equation itself. The conclusion emphasizes that the derived dispersion relation does not hold universally for all wave types, particularly in dispersive media.

PREREQUISITES
  • Understanding of Maxwell's equations
  • Familiarity with wave equations in physics
  • Knowledge of dispersion and its implications in wave propagation
  • Basic concepts of electromagnetic theory
NEXT STEPS
  • Study the derivation of the Kramers-Kronig relations in dispersive media
  • Examine the differences between classical and electromagnetic wave equations
  • Explore the concept of dispersion engineering in various materials
  • Investigate the implications of complex field variables in electromagnetic theory
USEFUL FOR

Physicists, electrical engineers, and students studying wave phenomena, particularly those interested in the behavior of electromagnetic waves in different media.

deuteron
Messages
64
Reaction score
14
TL;DR
does the dispersion relation hold for electromagnetic waves in all media, or just in non-dispersive media?
In my lectures, we have derived the dispersion relation
$$ |\vec k|^2 = \frac {n^2 \omega^2}{c^2}$$
by substituting in a plane wave solution for the electromagnetic wave, into the wave equation derived from the Maxwell equations
$$\Delta\vec E= \mu_0\epsilon_0 \frac {\partial^2 \vec E}{\partial t^2}$$

But we also derived the same wave equation for classical waves
$$\Delta f = \frac 1 {v^2} \frac {\partial^2 f}{\partial t^2}$$
from observing a wave propagating with velocity ##v##, and then saying that the wave would be constant in a coordinate system that was moving with the wave with the speed ##v##. From that requirement, we got that the most general form of the wave solution is
$$f(x,t)= A_1 h(x-vt) + A_2 g(x+vt)$$
and by twice partial differentiating, we got the above wave equation.

But this derivation from classical physics requires the assumption of non-dispersion, since we say that the wave does not change its shape for a coordinate system moving with the speed of the wave.
However, we get the same wave equation from the Maxwell equations, even though electromagnetic waves are dispersed in some media
How is that possible that 1. we derive an equation by making an assumption on non-dispersion, 2. we derive the same equation from Maxwell equations, 3. but the solution of the wave equations describing EM waves are allowed to be dispersed?

And if the wave equation holds for dispersed waves too, does that mean that the dispersion relation we derive by substituting in a plane wave solution, hold for both dispersed and non-dispersed plane waves, thus essentially for all waves?
Or is the above dispersion relation only valid for non-dispersive media? (which would make me more confused, since we can substitute in a solution for the wave equation that is dispersed, into the wave equation; since by requirement all waves are supposed to fulfill the wave equation, and there are dispersed waves)
 
Science news on Phys.org
If I understand you correctly, you are confusing "dispersion relation" with "dispersion", which may not be surprising.

A "dispersion relation" is the relationship between momentum and energy, while "dispersion" usually refers to a frequency/wavelength -dependent material property (for example, n(λ)).

Does that help?
 
  • Informative
Likes   Reactions: berkeman
Andy Resnick said:
If I understand you correctly, you are confusing "dispersion relation" with "dispersion", which may not be surprising.

A "dispersion relation" is the relationship between momentum and energy, while "dispersion" usually refers to a frequency/wavelength -dependent material property (for example, n(λ)).

Does that help?

we called the relationship between ##\vec k## and ##\omega## the dispersion relation in my lectures, and derived the above relationship from the wave equation, which we derived by assuming that the wave packet doesn't get spread, fall apart, in time; so by assuming a non-dispersive medium

I was curious if the relation we derived that way holds also for dispersive media, since we get the same wave equation from the Maxwell equations too
 
deuteron said:
we called the relationship between ##\vec k## and ##\omega## the dispersion relation in my lectures, and derived the above relationship from the wave equation, which we derived by assuming that the wave packet doesn't get spread, fall apart, in time; so by assuming a non-dispersive medium

I was curious if the relation we derived that way holds also for dispersive media, since we get the same wave equation from the Maxwell equations too
It seems you are asking the same question again?

Rather than give the same answer again, let me try this way: a dispersive medium is one in which the material response to an applied field is non-instantaneous and nonlocal:

D(t,x) = ∫dτ∫dξ ε(t,τ;ξ,x)E(τ,ξ)

From this, one can impose causality and derive the Kramers-Kronig relations (or equivalently Hilbert transforms) relating the real and imaginary components of (say) the permittivity.

Another response (from "Formal structure of electromagnetics" by Post):
"The traditional real algebraic relation between the fields is not adequate to represent dispersion even if one makes the coefficients ε and μ functions of the frequency or wave number, because the phase shift between cause and effect is not accounted for by a real algebraic relation. It was noted quite early, as in circuit theory, that the formalism of complex field variables enables one to remove this inadequacy."

So, in general, the answer is no. For example, the Pierce dispersion relation looks very different than E = cp or E = p2/2m:

https://www.egr.msu.edu/~pz/tutorial-TWT.pdf (eqn 5)

https://ece-research.unm.edu/FY12MURI/pdf_Files/Schamiloglu_EAPPC_BEAMS_2012.pdf (an example of 'dispersion engineering')
 
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
668