MHB Displacement-Time Graph Velocity of Objects X & Y

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Graphs Motion
Click For Summary
The gradient of the displacement-time graph indicates the velocity of objects X and Y, calculated as 5/3 m/s for X and 5 m/s for Y. The discussion confirms that both objects have equal displacement at time t=6, with specific calculations showing that X travels a distance of 10 meters while Y travels 30 meters. It emphasizes that displacement is the difference between final and initial positions, and in this case, the objects move along a line without changing direction. The calculations validate that the initial conditions affect the displacement values. Overall, the analysis clarifies the relationship between displacement and velocity for the two objects.
mathlearn
Messages
331
Reaction score
0
View attachment 6152

The gradient of the displacement time graph is the velocity.

Gradient of x = $\frac{y_1-y_2}{x_1-x_2}=\frac{30-40}{6-12}=\frac{-10}{-6}=\frac{5}{3}$ meters per second

Gradient of y = $\frac{y_1-y_2}{x_1-x_2}=\frac{0-40}{0-8}=\frac{-40}{-8}=5$ meters per second

Therefore the first option is false the second is also so not true, according to my calculations above the fourth option is true,and also it looks like the third is also true as the displacement is equal

Many Thanks :)
 

Attachments

  • displacement.png
    displacement.png
    8.4 KB · Views: 128
Mathematics news on Phys.org
I agree with you on (1), (2) and (4). Concerning (3), displacements are indeed equal at $t=6$. According to Wikipedia, displacement is the difference between the final and initial position vectors. In this problem, apparently, objects move along a line, so instead of vectors we may consider their position $s(t)$ at time $t$ on the line. Suppose displacement is counted relative to some initial time $t_0$. ($t_0$ cannot be 0 because $s_X(0)-s_X(t_0)=20$.) So
\begin{align}
s_X(6)-s_X(t_0)&=30\\
s_X(0)-s_X(t_0)&=20,
\end{align}
from where $s_X(6)-s_X(0)=10$. Similarly, $s_Y(6)-s_Y(0)=30$. The graph shows that the objects did not change the direction, so the distance $X$ traveled between $t=0$ and $t=6$ equals $|s_X(6)-s_X(0)|=10$, while the distance $Y$ traveled is 30.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
5
Views
2K
Replies
42
Views
3K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K