MHB Displacement-Time Graph Velocity of Objects X & Y

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Graphs Motion
AI Thread Summary
The gradient of the displacement-time graph indicates the velocity of objects X and Y, calculated as 5/3 m/s for X and 5 m/s for Y. The discussion confirms that both objects have equal displacement at time t=6, with specific calculations showing that X travels a distance of 10 meters while Y travels 30 meters. It emphasizes that displacement is the difference between final and initial positions, and in this case, the objects move along a line without changing direction. The calculations validate that the initial conditions affect the displacement values. Overall, the analysis clarifies the relationship between displacement and velocity for the two objects.
mathlearn
Messages
331
Reaction score
0
View attachment 6152

The gradient of the displacement time graph is the velocity.

Gradient of x = $\frac{y_1-y_2}{x_1-x_2}=\frac{30-40}{6-12}=\frac{-10}{-6}=\frac{5}{3}$ meters per second

Gradient of y = $\frac{y_1-y_2}{x_1-x_2}=\frac{0-40}{0-8}=\frac{-40}{-8}=5$ meters per second

Therefore the first option is false the second is also so not true, according to my calculations above the fourth option is true,and also it looks like the third is also true as the displacement is equal

Many Thanks :)
 

Attachments

  • displacement.png
    displacement.png
    8.4 KB · Views: 116
Mathematics news on Phys.org
I agree with you on (1), (2) and (4). Concerning (3), displacements are indeed equal at $t=6$. According to Wikipedia, displacement is the difference between the final and initial position vectors. In this problem, apparently, objects move along a line, so instead of vectors we may consider their position $s(t)$ at time $t$ on the line. Suppose displacement is counted relative to some initial time $t_0$. ($t_0$ cannot be 0 because $s_X(0)-s_X(t_0)=20$.) So
\begin{align}
s_X(6)-s_X(t_0)&=30\\
s_X(0)-s_X(t_0)&=20,
\end{align}
from where $s_X(6)-s_X(0)=10$. Similarly, $s_Y(6)-s_Y(0)=30$. The graph shows that the objects did not change the direction, so the distance $X$ traveled between $t=0$ and $t=6$ equals $|s_X(6)-s_X(0)|=10$, while the distance $Y$ traveled is 30.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top