Dissipation function is homogeneous in ##\dot{q}## second degree proof

Click For Summary
SUMMARY

The discussion focuses on proving that Rayleigh's dissipation function, defined as $$\mathcal{F}=\frac{1}{2} \sum_{i}\left(k_{x} v_{i x}^{2}+k_{y} v_{i j}^{2}+k_{z} v_{i z}^{2}\right)$$, is homogeneous of degree 2 in generalized velocities $$\dot{q}$$. The proof utilizes transformation equations for generalized coordinates and the relationship $$\mathcal{F}(q,\lambda \dot{q},t)=\lambda^2 \mathcal{F}(q,\dot{q},t)$$, confirming that $$g_{jk}$$, a function of $$q$$ only, does not depend on $$\dot{q}$$. This establishes that the dissipation function is indeed homogeneous of degree 2 in $$\dot{q}$$.

PREREQUISITES
  • Understanding of Rayleigh's dissipation function
  • Familiarity with generalized coordinates and velocities
  • Knowledge of transformation equations in mechanics
  • Basic concepts of homogeneous functions in mathematical physics
NEXT STEPS
  • Study the derivation of Rayleigh's dissipation function in classical mechanics
  • Explore the properties of homogeneous functions in physics
  • Learn about generalized coordinates and their applications in Lagrangian mechanics
  • Investigate the role of the stiffness matrix $$\hat{K}$$ in mechanical systems
USEFUL FOR

Researchers, physicists, and students in mechanical engineering or applied mathematics focusing on dynamical systems and energy dissipation analysis.

Kashmir
Messages
466
Reaction score
74
We have Rayleigh's dissipation function, defined as
##
\mathcal{F}=\frac{1}{2} \sum_{i}\left(k_{x} v_{i x}^{2}+k_{y} v_{i j}^{2}+k_{z} v_{i z}^{2}\right)
##

Also we have transformation equations to generalized coordinates as
##\begin{aligned} \mathbf{r}_{1} &=\mathbf{r}_{1}\left(q_{1}, q_{2}, \ldots, q_{3 N-k}, t\right) \\ & \vdots \\ \mathbf{r}_{N} &=\mathbf{r}_{N}\left(q_{1}, q_{2}, \ldots, q_{3 N-k}, t\right) \end{aligned}##

How can I prove that the dissipation function is homogeneous of degree 2 in ##\dot{q}##?
 
Last edited:
Physics news on Phys.org
You have ##\vec{v}_i=\dot{\vec{r}}_i=\dot{q}^j \partial_j \vec{r}_i## and thus
$$\mathcal{F}=\frac{1}{2} \sum_i \dot{q}^j \dot{q}^k (\partial_j \vec{r}_i) \cdot (\partial_k \vec{r}_i).$$
Sinc the ##\vec{r}_i## are functions of the ##q^j## and ##t## but not of ##\dot{q}^j## by assumption you have
$$\mathcal{F}(q,\lambda \dot{q},t)=\lambda^2 \mathcal{F}(q,\dot{q},t).$$
QED.
 
vanhees71 said:
You have ##\vec{v}_i=\dot{\vec{r}}_i=\dot{q}^j \partial_j \vec{r}_i## and thus
$$\mathcal{F}=\frac{1}{2} \sum_i \dot{q}^j \dot{q}^k (\partial_j \vec{r}_i) \cdot (\partial_k \vec{r}_i).$$
Sinc the ##\vec{r}_i## are functions of the ##q^j## and ##t## but not of ##\dot{q}^j## by assumption you have
$$\mathcal{F}(q,\lambda \dot{q},t)=\lambda^2 \mathcal{F}(q,\dot{q},t).$$
QED.
Thank you. Why not a partial with time term in ##\vec{v}_i=\dot{\vec{r}}_i=\dot{q}^j \partial_j \vec{r}_i## also where did the kx, ky, kz term go?
 
  • Like
Likes   Reactions: vanhees71
Kashmir said:
How can I prove that the dissipation function is homogeneous of degree 2 in ?
if ##\boldsymbol r_i## depends on t explicitly then it is not so
 
Last edited:
  • Like
Likes   Reactions: vanhees71 and Kashmir
Indeed, I've overlooked this and also forgot the coefficients. So we must have
$$\vec{r}_i=\vec{r}_i(q)$$
and thus
$$\dot{\vec{r}_i}=\dot{q}^j \partial_{j} \vec{r}_i(q)$$
and
$$\mathcal{F}=\frac{1}{2} \sum_i \vec{v}_i^{\text{T}} \hat{K} \vec{v}_i = \frac{1}{2} \dot{q}^j \dot{q}^k g_{jk}$$
with
$$g_{jk} = \sum_i (\partial_j \vec{r}_i)^{\text{T}} \hat{K} \partial_k \vec{r}_i.$$
Now indeed ##g_{jk}## is a function of the ##q## only and don't depend on ##\dot{q}##, and thus indeed ##\mathcal{F}## is a homogeneous function of degree 2 in the generalized velocities ##\dot{q}##.
 
  • Like
Likes   Reactions: Kashmir
wrobel said:
if ##\boldsymbol r_i## depends on t explicitly then it is not so
Yes, thank you. :)
 
vanhees71 said:
Indeed, I've overlooked this and also forgot the coefficients. So we must have
$$\vec{r}_i=\vec{r}_i(q)$$
and thus
$$\dot{\vec{r}_i}=\dot{q}^j \partial_{j} \vec{r}_i(q)$$
and
$$\mathcal{F}=\frac{1}{2} \sum_i \vec{v}_i^{\text{T}} \hat{K} \vec{v}_i = \frac{1}{2} \dot{q}^j \dot{q}^k g_{jk}$$
with
$$g_{jk} = \sum_i (\partial_j \vec{r}_i)^{\text{T}} \hat{K} \partial_k \vec{r}_i.$$
Now indeed ##g_{jk}## is a function of the ##q## only and don't depend on ##\dot{q}##, and thus indeed ##\mathcal{F}## is a homogeneous function of degree 2 in the generalized velocities ##\dot{q}##.
Got it. Thank you very much. :)
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
630
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K