- #1
- 152
- 0
I've been reading a book called Superfractals, and I'm having trouble with a particular proof:
Definitions:
The distance from a point [itex]x \in X[/itex] to a set [itex]B \in \mathbb{H}(X)[/itex] (where [itex]\mathbb{H}(X)[/itex] is the space of nonempty compact subsets of [itex]X[/itex] is:
[tex]D_B(x):=\mbox{min}\lbrace d(x,b):b \in B\rbrace[/tex]
The distance from [itex]A \in \mathbb{H}(X)[/itex] to [itex]B \in \mathbb{H}(X)[/itex] is:
[tex]D_B(A):=\mbox{max}\lbrace D_B(a):a \in A\rbrace[/tex]
for all [itex]A,B \in \mathbb{H}(X)[/itex].
The proof is to show that [itex]D_B(A) \leq D_B(C)+D_C(A)[/itex]. The proof goes:
[tex]\begin{array}{rcl}D_B(a) &=&\mbox{min}_{b \in B}d(a,b) \\
&\leq& \mbox{min}_{b \in B}(d(a,c)+d(c,b))\\
&=&d(a,c)+\mbox{min}_{b \in B}d(c,b)\\
\end{array}[/tex]
Then
[tex]D_B(a) \leq \mbox{min}_{c \in C}d(a,c)+\mbox{max}_{c \in C}\mbox{min}_{b \in B}d(c,b)[/tex]
How do we reach this last step?
Definitions:
The distance from a point [itex]x \in X[/itex] to a set [itex]B \in \mathbb{H}(X)[/itex] (where [itex]\mathbb{H}(X)[/itex] is the space of nonempty compact subsets of [itex]X[/itex] is:
[tex]D_B(x):=\mbox{min}\lbrace d(x,b):b \in B\rbrace[/tex]
The distance from [itex]A \in \mathbb{H}(X)[/itex] to [itex]B \in \mathbb{H}(X)[/itex] is:
[tex]D_B(A):=\mbox{max}\lbrace D_B(a):a \in A\rbrace[/tex]
for all [itex]A,B \in \mathbb{H}(X)[/itex].
The proof is to show that [itex]D_B(A) \leq D_B(C)+D_C(A)[/itex]. The proof goes:
[tex]\begin{array}{rcl}D_B(a) &=&\mbox{min}_{b \in B}d(a,b) \\
&\leq& \mbox{min}_{b \in B}(d(a,c)+d(c,b))\\
&=&d(a,c)+\mbox{min}_{b \in B}d(c,b)\\
\end{array}[/tex]
Then
[tex]D_B(a) \leq \mbox{min}_{c \in C}d(a,c)+\mbox{max}_{c \in C}\mbox{min}_{b \in B}d(c,b)[/tex]
How do we reach this last step?