MHB Distance between the centers of two circles

  • Thread starter Thread starter Kobzar
  • Start date Start date
  • Tags Tags
    Circles
AI Thread Summary
The discussion focuses on calculating the distance between the centers of two circles using geometric principles and the Pythagorean theorem. The user presents a mathematical problem involving tangent line segments to the circles and derives equations to express the relationship between the radii and the distance. Key findings include that the distance depends solely on the radii and the distance between points on the tangent lines, independent of other variables. The conversation also touches on the use of TikZ for creating diagrams, with participants sharing insights on coding practices. Overall, the thread emphasizes mathematical reasoning in geometry and collaborative problem-solving.
Kobzar
Messages
11
Reaction score
0
Hello, everybody:

I am a philologist who is fond of mathematics, but who unfortunately has just an elementary high school knowledge of them. I am translating La leçon de Platon, by Dom Néroman (La Bégude de Mazenc, Arma Artis, 2002), which deals with music theory and mathematics in the works of Plato. The problem which brings me here is not about translation, but about mathematics. Please see attachment.

Thank you very much in advance for whatever answer, and best regards.
 

Attachments

Mathematics news on Phys.org
Reference the attached marked diagram.

Line segments PB and PA are tangent to each circle. As such, they form right angles $PAC$ and $PBC'$

Using Pythagoras ...

$PC^2 = R^2 + PA^2 \implies PA^2 = PC^2 - R^2$
$PC'^2 = R'^2 + PB^2 \implies PB^2 = PC'^2 - R'^2$

$PA^2 = PB^2 \implies PC^2 - R^2 = PC'^2 - R'^2$

from the last equation above ...

$R'^2 - R^2 = PC'^2 - PC^2$

using Pythagoras again ...

$R'^2 - R^2 = (PD^2+C'D^2) - (PD^2+CD^2)$

$R'^2 - R^2 = C'D^2 - CD^2$

factoring the right side ...

$R'^2 - R^2 = (C'D - CD)(C'D+CD)$

note $C'D = a - CD$ and $a = C'D + CD$

substituting ...

$R'^2 - R^2 = (a - 2CD)(a)$

$\dfrac{R'^2-R^2}{a} = a - 2CD$

$2CD = a - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2}{a} - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2 - (R'^2-R^2)}{a}$

$CD = \dfrac{a^2 - (R'^2-R^2)}{2a}$

circle_problem.jpg
 
[TIKZ]\draw [very thick] circle (2) ;
\draw [very thick] (7,0) circle (3) ;
\draw [thick] (-2,0) -- (11,0) ;
\draw [thick] (3.14,-3) -- (3.14,4) ;
\coordinate [label=right:$A$] (A) at (1.95,-0.5) ;
\coordinate [label=above:$B$] (B) at (7.5,2.95) ;
\coordinate [label=left:$P$] (P) at (3.14,3.5) ;
\coordinate [label=above:$C$] (C) at (0,0) ;
\coordinate [label=above right:$C'$] (E) at (7,0) ;
\coordinate [label=above right:$D$] (D) at (3.14,0) ;
\draw [very thick] (P) -- node[ right ]{$d$} (1.65,-1.5) ;
\draw [very thick] (P) -- node[ above ]{$d$} (8.5,2.85) ;
\draw [very thick] (C) -- node[ below ]{$R$} (A) ;
\draw [very thick] (E) -- node[ right ]{$R'$} (B) ;
\draw (C) -- (P) -- (E) ;
\draw (1.5,0.2) node {$x$} ;
\draw (5,0.2) node {$a-x$} ;
\draw (3.4,1.7) node {$h$} ;[/TIKZ]

Write $d$ for the equal distances $PA$ and $PB$, $h$ for $PD$, and $x$ for $CD$, so that $DC = a-x$.

Since $PC$ is the hypotenuse of both of the right-angled triangles $PAC$ and $PDC$, it follows that $$R^2+d^2 = x^2+h^2.$$ Similarly, it follows from the triangles $PBC'$ and $PDC'$ that $R'^2 + d^2 = (a-x)^2 + h^2.$ Subtract the first of those equations from the second, to get $$R'^2-R^2 = (a-x)^2-x^2 = a^2 -2ax.$$ Therefore $R'^2 - R^2 = a^2-2ax$, so that $x = \dfrac{a^2 - (R'^2 - R^2)}{2a}.$

Notice that $x$ turns out to depend only on $R$, $R'$ and $a$, and is independent of $d$ and $h$. This shows that the locus of $P$ is indeed the vertical line through $D$.

Edit: having posted that, I see that skeeter got there first!
 
Opalg said:
Edit: having posted that, I see that @skeeter got there first!

very nice diagram ... TIKZ?
 
skeeter said:
very nice diagram ... TIKZ?
Yes, but don't copy my Tikz coding – it's full of clumsy kludges.
 
Opalg said:
[TIKZ]\draw [very thick] circle (2) ;
\draw [very thick] (7,0) circle (3) ;
\draw [thick] (-2,0) -- (11,0) ;
\draw [thick] (3.14,-3) -- (3.14,4) ;
\coordinate [label=right:$A$] (A) at (1.95,-0.5) ;
\coordinate [label=above:$B$] (B) at (7.5,2.95) ;
\coordinate [label=left:$P$] (P) at (3.14,3.5) ;
\coordinate [label=above:$C$] (C) at (0,0) ;
\coordinate [label=above right:$C'$] (E) at (7,0) ;
\coordinate [label=above right:$D$] (D) at (3.14,0) ;
\draw [very thick] (P) -- node[ right ]{$d$} (1.65,-1.5) ;
\draw [very thick] (P) -- node[ above ]{$d$} (8.5,2.85) ;
\draw [very thick] (C) -- node[ below ]{$R$} (A) ;
\draw [very thick] (E) -- node[ right ]{$R'$} (B) ;
\draw (C) -- (P) -- (E) ;
\draw (1.5,0.2) node {$x$} ;
\draw (5,0.2) node {$a-x$} ;
\draw (3.4,1.7) node {$h$} ;[/TIKZ]

Write $d$ for the equal distances $PA$ and $PB$, $h$ for $PD$, and $x$ for $CD$, so that $DC = a-x$.

Since $PC$ is the hypotenuse of both of the right-angled triangles $PAC$ and $PDC$, it follows that $$R^2+d^2 = x^2+h^2.$$ Similarly, it follows from the triangles $PBC'$ and $PDC'$ that $R'^2 + d^2 = (a-x)^2 + h^2.$ Subtract the first of those equations from the second, to get $$R'^2-R^2 = (a-x)^2-x^2 = a^2 -2ax.$$ Therefore $R'^2 - R^2 = a^2-2ax$, so that $x = \dfrac{a^2 - (R'^2 - R^2)}{2a}.$

Notice that $x$ turns out to depend only on $R$, $R'$ and $a$, and is independent of $d$ and $h$. This shows that the locus of $P$ is indeed the vertical line through $D$.

Edit: having posted that, I see that skeeter got there first!
Thank you very much!
 
Opalg said:
Yes, but don't copy my Tikz coding – it's full of clumsy kludges.
I usually look at the source of Opalg's pictures to help me get rid of my own clumsy kludges. ;)
 
skeeter said:
Reference the attached marked diagram.

Line segments PB and PA are tangent to each circle. As such, they form right angles $PAC$ and $PBC'$

Using Pythagoras ...

$PC^2 = R^2 + PA^2 \implies PA^2 = PC^2 - R^2$
$PC'^2 = R'^2 + PB^2 \implies PB^2 = PC'^2 - R'^2$

$PA^2 = PB^2 \implies PC^2 - R^2 = PC'^2 - R'^2$

from the last equation above ...

$R'^2 - R^2 = PC'^2 - PC^2$

using Pythagoras again ...

$R'^2 - R^2 = (PD^2+C'D^2) - (PD^2+CD^2)$

$R'^2 - R^2 = C'D^2 - CD^2$

factoring the right side ...

$R'^2 - R^2 = (C'D - CD)(C'D+CD)$

note $C'D = a - CD$ and $a = C'D + CD$

substituting ...

$R'^2 - R^2 = (a - 2CD)(a)$

$\dfrac{R'^2-R^2}{a} = a - 2CD$

$2CD = a - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2}{a} - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2 - (R'^2-R^2)}{a}$

$CD = \dfrac{a^2 - (R'^2-R^2)}{2a}$

View attachment 11019
Thank you very much!
 
Klaas van Aarsen said:
I usually look at the source of Opalg's pictures to help me get rid of my own clumsy kludges. ;)
You're too modest, Klaas – you're definitely the Tikz expert around here.
 
  • #10
Opalg said:
You're too modest, Klaas – you're definitely the Tikz expert around here.
Not sure about that, but at least I'm able to do something about it if for some reason TikZ does not work as expected.
 

Similar threads

Replies
2
Views
1K
Replies
39
Views
6K
Replies
1
Views
3K
Replies
8
Views
5K
Replies
7
Views
3K
Replies
9
Views
4K
Back
Top