So I know that in general, for the ring of ##n \times n## matrices, if ##AB = 0##, then it is not necessarily true that ##A=0## or ##B=0##. However, in other rings, for example the integers ##\mathbb{Z}##, I know that this statement is true. So what property is the ring of matrices lacking such that it is not true in general?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Distinctiveness of the set of nxn matrices as a ring

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**