Distribution and Density functions of maximum of random variables

Click For Summary

Discussion Overview

The discussion revolves around finding the distribution and density functions of the maximum of independent, identically distributed random variables, as well as the distribution of the ratio of two independent random variables. Participants explore techniques related to cumulative distribution functions (CDFs), probability density functions (PDFs), and transformations of random variables.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants inquire about the distribution and density functions of the maximum of three independent random variables with a specific density function.
  • Others suggest using CDFs to compute the maximum, emphasizing the importance of understanding the event involving the maximum of the random variables.
  • A participant claims to have computed the PDF for the ratio of two independent exponential random variables, presenting a specific formula.
  • Another participant provides a calculation for the CDF of the maximum of three i.i.d. random variables and asks for verification of their results.
  • Some participants express confusion regarding the interpretation of events and the relationship to the CDF of the maximum random variable.
  • There are multiple computations presented for the CDF and PDF of the maximum, with varying degrees of clarity and correctness.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the computations presented, and there are differing interpretations of how to approach the problems. Some participants challenge the reasoning behind certain claims, indicating a lack of agreement on specific methods and results.

Contextual Notes

Some participants note gaps in understanding related to order statistics and suggest consulting external resources for clarification. There are also mentions of potential confusion regarding notation and the proper application of probability functions.

Who May Find This Useful

Readers interested in probability theory, particularly in the context of random variables, transformations, and order statistics, may find this discussion relevant.

WMDhamnekar
MHB
Messages
378
Reaction score
30
1] Let X,Y,Z be independent, identically distributed random variables, each with density $f(x)=6x^5$ for $0\leq x\leq 1,$ and 0 elsewhere. How to find the distributon and density functions of the maximum of X,Y,Z.2]Let X and Y be independent random variables, each with density $e^{-x},x\geq 0$.How to find the distribution and density functions of $Z=\frac{Y}{X}?$

At present, I am studying CDF, PDF and MGF techniques for transformations of random variables. I am searching for answers for similar types of questions on internet. Meanwhile if any member knows correct answers, may reply with correct answers.

I have computed pdf for $Z=\frac{Y}{X}$ as $\frac{e^{(-2x)}}{x},x>0$. Is that correct?
 
Last edited:
Physics news on Phys.org
Dhamnekar Winod said:
1] Let X,Y,Z be independent, identically distributed random variables, each with density $f(x)=6x^5$ for $0\leq x\leq 1,$ and 0 elsewhere. How to find the distributon and density functions of the maximum of X,Y,Z.2]Let X and Y be independent random variables, each with density $e^{-x},x\geq 0$.How to find the distribution and density functions of $Z=\frac{Y}{X}?$

At present, I am studying CDF, PDF and MGF techniques for transformations of random variables. I am searching for answers for similar types of questions on internet. Meanwhile if any member knows correct answers, may reply with correct answers.

I have computed pdf for $Z=\frac{Y}{X}$ as $\frac{e^{(-2x)}}{x},x\geq 0$. Is that correct?

do these one at a time. You should show your work so we can follow what you know /don't know.

In both cases you want to work with CDFs not PDFs as much as possible. For the first question consider the event
$\{X\leq t\} \cap \{Y\leq t\} \cap \{Z\leq t\}$
how would you compute that, and what does it have to do with the CDF for the maximal random variable?

Once you have the desired CDF, just differentiate at the end to recover the PDF.
 
steep said:
do these one at a time. You should show your work so we can follow what you know /don't know.

In both cases you want to work with CDFs not PDFs as much as possible. For the first question consider the event
$\{X\leq t\} \cap \{Y\leq t\} \cap \{Z\leq t\}$
how would you compute that, and what does it have to do with the CDF for the maximal random variable?

Once you have the desired CDF, just differentiate at the end to recover the PDF.

Hello,
Answer to 2) question is as follows:

The joint density of X and Y is given by $f_{X,Y}(x,y)=e^{-x}*e^{-x}=e^{-2x}$

Now if $g_1(x,y)=\frac{y}{x}, g_2(x,y)=x,$ then

$\frac{\partial{g_1}}{\partial{x}}=y$, $\frac{\partial{g_1}}{\partial{y}}=\frac{1}{x}$

$\frac{\partial{g_2}}{\partial{x}}=1$, $\frac{\partial{g_2}}{\partial{y}}=0$

and so,

$$J(x,y)=\left| \begin{matrix}y & \frac{1}{x}\\ 1&0\end{matrix} \right|=\frac{-1}{x}$$

Finally, $z=\frac{y}{x}, v=x$ have as their solutions x=v, y=zv, we see that

$$f_{V,Z}(v,z)=f_{x,y}[v,zv]v=ve^{-2v}$$

Now$$f_Z(z)=\displaystyle\int_0^\infty x*e^{-2x}dx=0.25$$

Part 2: Answer to 1) the event $(X\leq t)\cap(Y\leq t)\cap(Z\leq t)=1$. But how can we compute PDF and CDF of maximum of X,Y,Z.
 
Dhamnekar Winod said:
Part 2: Answer to 1) the event $(X\leq t)\cap(Y\leq t)\cap(Z\leq t)=1$. But how can we compute PDF and CDF of maximum of X,Y,Z.

No. The probability of those 3 events occurring is not in general 1. A nit pick but an important one: the intersection of 3 events does not spit out a number either -- it's only after you apply a probability function to a collection of events-- that maps the underlying sample points to a number in $\in [0,1]$

I am telling you the intersection of those 3 events has something to do with the CDF of the maximum of those 3 random variables...
= = = = =
Based on this response: I'd strongly suggest consulting an outside text as there are material gaps that need addressed. The subject matter you're dealing with in particular is called Order Statistics. They are nicely treated in Blitzstein and Hwang's book, which is now freely available here:

https://projects.iq.harvard.edu/stat110/home
 
Hello,
I have computed CDF of maximum of $X,Y,Z$ i.i.d. random variables=$X^{18}$ and its PDF is =$18*X^{17}$.Are my computation correct?
 
Dhamnekar Winod said:
Hello,
I have computed CDF of maximum of $X,Y,Z$ i.i.d. random variables=$X^{18}$ and its PDF is =$18*X^{17}$.Are my computation correct?

If I read between the lines, basically yes, though the way you've written it is confusing as capital $X$ is typically reserved for a random variable $X$, and of course you'd need to specify the domain

So the CDF of your original random variables is given by $F_X(t) = t^6$ for $t\in [0,1]$. They are iid so $F_Y(t) = t^6$ and $F_Z(t) = t^6$.

Since they are independent then
$P\big(\max\{X,Y,Z\} \leq t\big)= P\big((X\leq t)\cap(Y\leq t)\cap(Z\leq t)\big) = P(X\leq t)\cdot P(Y\leq t)\cdot P(Z\leq t)= F_X(t) \cdot F_Y(t) \cdot F_Z(t) = t^{18}$
for $t\in [0,1]$, and 1 for $t \gt 1$, and 0 for $t \lt 0$
 
steep said:
If I read between the lines, basically yes, though the way you've written it is confusing as capital $X$ is typically reserved for a random variable $X$, and of course you'd need to specify the domain

So the CDF of your original random variables is given by $F_X(t) = t^6$ for $t\in [0,1]$. They are iid so $F_Y(t) = t^6$ and $F_Z(t) = t^6$.

Since they are independent then
$P\big(\max\{X,Y,Z\} \leq t\big)= P\big((X\leq t)\cap(Y\leq t)\cap(Z\leq t)\big) = P(X\leq t)\cdot P(Y\leq t)\cdot P(Z\leq t)= F_X(t) \cdot F_Y(t) \cdot F_Z(t) = t^{18}$
for $t\in [0,1]$, and 1 for $t \gt 1$, and 0 for $t \lt 0$

Hello,
$P\big(\min\{X,Y,Z\}\leq t\big)=1-(1-t^6)^3$ and its density is $18*t^5(1-t^6)^2$, for$ t\in [0,1]$ and 1for$ t\gt 1$ and 0 for $t \lt 0$
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K