Discussion Overview
The discussion revolves around the relationship between two matrices that share the same eigenvalues, specifically whether they also share the same probability density function (PDF). The context includes theoretical considerations related to matrices with complex Gaussian entries and their distributions.
Discussion Character
- Exploratory, Technical explanation, Debate/contested
Main Points Raised
- One participant questions the meaning of 'PDF' in relation to matrices, suggesting that matrices do not have a widely accepted PDF.
- Another participant introduces a specific case involving a matrix with i.i.d. complex Gaussian entries and proposes that both matrices follow the complex Wishart distribution, anticipating they share the same nonzero eigenvalues.
- A different participant challenges the assumption that the nonzero eigenvalues of the two matrices will be the same, pointing out that they have different dimensions and thus different numbers of eigenvalues.
- In response, a participant asserts that the nonzero eigenvalues are indeed the same and suggests verifying this with MATLAB, while reiterating the question about the equality of their probability density functions.
Areas of Agreement / Disagreement
Participants express differing views on the relationship between the eigenvalues of the matrices and their probability density functions. There is no consensus on whether the matrices share the same PDF, and the discussion remains unresolved.
Contextual Notes
The discussion highlights the dependence on specific definitions and assumptions regarding the properties of matrices and their eigenvalues, as well as the implications for their distributions.