A Distribution of sum of two circular uniform RVs in the range [0, 2 pi)

  • A
  • Thread starter Thread starter nikozm
  • Start date Start date
  • Tags Tags
    Distribution
nikozm
Messages
51
Reaction score
0
TL;DR Summary
distribution; uniform
Hello,

I would like to know the analytical steps of deriving the distribution of sum of two circular (modulo 2 pi) uniform RVs in the range [0, 2 pi).

Any help would be useful

Thanks in advance!
 
Physics news on Phys.org
Easiest way is <br /> P(0 \leq Z = (\Theta + \Phi) \mod 2 \pi &lt; z ) = P(0 \leq \Theta + \Phi &lt; z) + P(2\pi \leq \Theta + \Phi &lt; z + 2\pi)<br /> for z \in [0, 2\pi) and \Theta, \Phi are independent and uniformly distributed on [0, 2\pi).
 
I try to utilize this formula to a similar case, but the result seems too complicated. What if one of two RVs is a circular (mod 2 pi) uniformly distributed in [0, 2 pi) and the other one is an independent uniform RV in the range [-2^(-q) pi, 2^(-q) pi], where q is a nonnegative integer greater or equal than one. I presume that their sum is also a uniform RV, but I am not sure about its range.

Can you help me on this.

Thank you so much in advance.
 
In the original it is not clear to me that the sum is also mod 2pi. If not then the result will be different.

nikozm said:
I try to utilize this formula to a similar case, but the result seems too complicated. What if one of two RVs is a circular (mod 2 pi) uniformly distributed in [0, 2 pi) and the other one is an independent uniform RV in the range [-2^(-q) pi, 2^(-q) pi], where q is a nonnegative integer greater or equal than one. I presume that their sum is also a uniform RV, but I am not sure about its range.

Can you help me on this.

Thank you so much in advance.
Same here. Is the result mod 2pi? Unfortunately Wikipedia gives two definitions of the mod operator and the answer differs in the two cases. So you are right to be uncertain.

Wikipedia : In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
8
Views
1K
Replies
36
Views
4K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
11
Views
3K
Replies
3
Views
1K
Back
Top