Distributive Properties of the Determinate

I don´t have my linear algebra books with me and I forget how the distributive property of the determinate is proven. Can someone point me to a good link_
 

HallsofIvy

Science Advisor
Homework Helper
41,715
876
What distributive property are you talking about? The distributive property is a(b+ c)= ab+ ac. Where are you putting the determinant in that? If you are thinking "det(b+ c)= det(b)+ det(c)", that's simply not true.
 
What distributive property are you talking about? The distributive property is a(b+ c)= ab+ ac. Where are you putting the determinant in that? If you are thinking "det(b+ c)= det(b)+ det(c)", that's simply not true.
Distributive with respect to multiplication.
 
Do you mean "Det(AB)= det(A)det(B)"? That's now what I would call "distributive".

You might look at
https://www.physicsforums.com/showthread.php?t=94344
That's what they called it at mathworld.

The definition of the determinate is:

[tex]a=\sum_{j_1...j_n}(-1)^ka_{1j_1}a_{2j_2}...a_{nj_n}[/tex]

where the sum is taken over all permutations of [tex]\{j_1...j_n\}[/tex] and k=0 for even permutations and k=1 for odd permutations.
 
Last edited:

HallsofIvy

Science Advisor
Homework Helper
41,715
876
Yes, they do call it that! If find that very peculiar.
 
Yes, they do call it that! If find that very peculiar.
I was thinking of this argument today. Given you can compute the determinate by row operations then it seems apparent given the associativity of matrices that first reducing one matrix to reduced row echelon form via row operations and then the other via row operations;

is equivalent to taking the composition of the two matrices which reduce the matricies for which the determinate is bing computed to row echelon form and then applying this transformation to the product of the matrix product for which the determinate is being computed.

However, I was hoping for a proof which directly applied the definition of the determinate.
 

Related Threads for: Distributive Properties of the Determinate

  • Posted
Replies
15
Views
7K
  • Posted
Replies
1
Views
3K
Replies
2
Views
674
Replies
33
Views
11K
Replies
4
Views
2K
  • Posted
Replies
1
Views
2K
  • Posted
Replies
5
Views
31K
Replies
9
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top