- #1
Maliska
- 2
- 0
I have a larger problem involving divergences and curls, but the correct answer requires ∇°B (divergence of B) = 0. I understand the proof of this in Griffiths, but the definition of divergence in cylindrical coordinates is:
After using the product rule to split the first term, we get the divergence of B is B_rho / rho + 0 + 0 + 0, or simply Div(B)=B_rho / rho; however, this clearly contradicts what we know about the divergence of B being zero. Can someone please clarify this for me, I've been stuck at it for hours.
Thanks.
P.s. First post!
After using the product rule to split the first term, we get the divergence of B is B_rho / rho + 0 + 0 + 0, or simply Div(B)=B_rho / rho; however, this clearly contradicts what we know about the divergence of B being zero. Can someone please clarify this for me, I've been stuck at it for hours.
Thanks.
P.s. First post!