MHB Divergent sequence (Hanym's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Divergent Sequence
Click For Summary
The sequence defined as an = (e^(2n) + 6n)^(1/2) diverges to infinity as n approaches infinity. It is clarified that the expression should be interpreted as e raised to the power of 2n. By demonstrating that an is greater than n^(1/2), it is shown that the limit of n^(1/2) also approaches infinity. Additionally, using properties of divergent sequences confirms that the limit of an is indeed infinity. Thus, the conclusion is that lim (n→∞) an = +∞.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

an= (e^2n + 6n) ^1/2

Here is a link to the question:

Find the limit of sequence? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Hanym,

I suppose you meant $e^{2n}$, not $e^2n$. One way: we have $a_n=(e^{2n} + 6n) ^{1/2}>n^{1/2}$. Suppose $K>0$ then, $n^{1/2}>K\Leftrightarrow n>K^2$. Choosing $n_0=\lfloor K^2\rfloor+1$, if $n\ge n_0$ then $n^{1/2}>K$ and this means that $\displaystyle\lim_{n\to +\infty}n^{1/2}=+\infty$. As a consequence, $\displaystyle\lim_{n\to +\infty}a_n=+\infty$.

Alternatively, you can use well known properties of elementary functions and the Algebra of divergent sequences: $$\lim_{n\to +\infty}a_n=((+\infty)+(+\infty))^{1/2}=(+\infty)^{1/2}=+\infty$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K