I Diverging Gaussian curvature and (non) simply connected regions

Vini
Messages
3
Reaction score
1
Hi there!
I have a few related questions on Gaussian curvature (K) of surfaces and simply connected regions:
  1. Suppose that K approaches infinity in the neighborhood of a point (x1,x2) . Is there any relationship between the diverging points of K and (non) simply connected regions?
  2. If K diverges in the neighborhood of a point (x1,x2), how may one prove that this point lies in a (non) simply connected region?
Thanks in advance.
 
Physics news on Phys.org
Vini said:
Hi there!
I have a few related questions on Gaussian curvature (K) of surfaces and simply connected regions:
  1. Suppose that K approaches infinity in the neighborhood of a point (x1,x2) . Is there any relationship between the diverging points of K and (non) simply connected regions?
  2. If K diverges in the neighborhood of a point (x1,x2), how may one prove that this point lies in a (non) simply connected region?
Thanks in advance.
I don't think so. It seems that the surface could have a cusp rather than a missing point.
 
Here is a sketch of deduction of the Lagrange equations by means of the covariance argument. I believe that it is a suitable substitute for the archaic terminology that is employed in most textbooks. Assume we have ##\nu## particles with masses ##m_1,\ldots,m_\nu## and with position vectors $$\boldsymbol r_i=(x^{3(i-1)+1},x^{3(i-1)+2},x^{3(i-1)+3})\in\mathbb{R}^3,\quad i=1,\ldots,\nu.$$ Thus the position of the system is characterized by a vector...