I Diverging Gaussian curvature and (non) simply connected regions

Vini
Messages
3
Reaction score
1
Hi there!
I have a few related questions on Gaussian curvature (K) of surfaces and simply connected regions:
  1. Suppose that K approaches infinity in the neighborhood of a point (x1,x2) . Is there any relationship between the diverging points of K and (non) simply connected regions?
  2. If K diverges in the neighborhood of a point (x1,x2), how may one prove that this point lies in a (non) simply connected region?
Thanks in advance.
 
Physics news on Phys.org
Vini said:
Hi there!
I have a few related questions on Gaussian curvature (K) of surfaces and simply connected regions:
  1. Suppose that K approaches infinity in the neighborhood of a point (x1,x2) . Is there any relationship between the diverging points of K and (non) simply connected regions?
  2. If K diverges in the neighborhood of a point (x1,x2), how may one prove that this point lies in a (non) simply connected region?
Thanks in advance.
I don't think so. It seems that the surface could have a cusp rather than a missing point.
 
I'm a bit confused by the conditions on the existence of coordinate basis given by Frobenius's theorem. Namely, let's take a n-dimensional smooth manifold and a set of n smooth vector fields defined on it. Suppose they are pointwise linearly independent and do commute each other (i.e. zero commutator/Lie bracket). That means they span the entire tangent space at any point and since commute, they define a local coordinate basis. What does this mean? Well, starting from any point on the...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 12 ·
Replies
12
Views
6K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K