- #1
Silversonic
- 130
- 1
Provided they aren't in an excited state (which would allow a decay via EM or strong). I had a question asking why the neutral lambda particle, consisting of uds quarks, has a lifetime characteristic of the weak. The answer being that it must decay via the weak to change the s-quark flavour into a down or an up.
But this has me thinking, don't all baryons decay only by the weak force? I don't have it confirmed in my notes anywhere, and a google search revealed to me that most baryons do (but didn't mention why there was an exception). If a decay process must happen through the constraint that the constiuent produced particles have less rest mass-energy than the decaying particle, then surely weak is the only way? Because a strong decay (emission of a gluon by a quark) or a electromagnetic decay (emission of a photon) of a hadron (consititing of only three quarks, no antiquarks) can only hope to pair-produce more quarks but not change any of the quarks of the original hadron. Hence increasing mass-energy, rather than lowering, contradicting the original assumption.
So a baryon can only reduce the rest mass-energy by the weak force, the strong/EM just increase it for a baryon. Surely? It seems like something that should've been mentioned if it was true. Maybe I'm over-simplifying the decay process (and there isn't something I've considered).
Case isn't the same for a meson of course. The neutral pion can self annihilate and decay into two photons via the EM force.
But this has me thinking, don't all baryons decay only by the weak force? I don't have it confirmed in my notes anywhere, and a google search revealed to me that most baryons do (but didn't mention why there was an exception). If a decay process must happen through the constraint that the constiuent produced particles have less rest mass-energy than the decaying particle, then surely weak is the only way? Because a strong decay (emission of a gluon by a quark) or a electromagnetic decay (emission of a photon) of a hadron (consititing of only three quarks, no antiquarks) can only hope to pair-produce more quarks but not change any of the quarks of the original hadron. Hence increasing mass-energy, rather than lowering, contradicting the original assumption.
So a baryon can only reduce the rest mass-energy by the weak force, the strong/EM just increase it for a baryon. Surely? It seems like something that should've been mentioned if it was true. Maybe I'm over-simplifying the decay process (and there isn't something I've considered).
Case isn't the same for a meson of course. The neutral pion can self annihilate and decay into two photons via the EM force.