I Do hyperbolic harmonics exist?

gerald V
Messages
66
Reaction score
3
TL;DR Summary
Do functions comparable to the spherical harmonics exist in case of sign changes in the algebra?
With the algebra so(3) are associated the spherical harmonics. I would assume that comparably with the algebra so(2,1) are associated functions that can be addressed as hyperbolic harmonics. But I nowhere found any reference to them. Do they exist and if so, where can they be found?

Thank you very much in advance.
 
Physics news on Phys.org
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top