Do Planets and Stars Have a Net Charge and How Can It Be Measured?

Click For Summary
SUMMARY

The discussion centers on the net charge of planets and stars, particularly focusing on Earth and the Sun. It is established that Earth is effectively neutral, with a balance of positive and negative charges maintained by thunderstorms and solar wind. The solar corona exhibits a significant electric field due to the segregation of electrons and protons, with a predicted charge of approximately 100 C for the Sun, which is minimal relative to its size. The paper "On the global electrostatic charge of stars" provides a theoretical framework for understanding stellar charge, indicating a linear relationship between charge and mass within a stellar sphere.

PREREQUISITES
  • Understanding of electrostatics and electric fields
  • Familiarity with plasma physics and stellar dynamics
  • Knowledge of solar phenomena and their effects on planetary bodies
  • Basic principles of charge conservation and electrical neutrality
NEXT STEPS
  • Research "On the global electrostatic charge of stars" in Astronomy and Astrophysics for detailed insights
  • Explore the implications of solar wind on planetary charge dynamics
  • Study the role of thunderstorms in Earth's electrical balance
  • Investigate the relationship between stellar mass and electrostatic charge using the formula Qr = 77.043 Mr
USEFUL FOR

Astronomers, physicists, and students interested in astrophysics, particularly those studying the electrical properties of celestial bodies and their interactions with solar phenomena.

Buckeye
Messages
164
Reaction score
2
The Earth is effectively an insulator in space, and the sun continuously beats on the Earth with protons, electrons and other particles.

Does the planet Earth and all other planets have a net charge, and if so, how can we measure the polarity and extent of that charge?

Turning to the Sun and the stars, do they have a net charge, and if so, how could it be measured?
 
Astronomy news on Phys.org
Buckeye said:
The Earth is effectively an insulator in space, and the sun continuously beats on the Earth with protons, electrons and other particles.

Does the planet Earth and all other planets have a net charge, and if so, how can we measure the polarity and extent of that charge?

Turning to the Sun and the stars, do they have a net charge, and if so, how could it be measured?
From what I've seen it hasnt been directly mearsured. You'd need to take varying measurements of the E-field produced at varying radi to work out the PD at each point, but I think that's harder to do in practise than it sounds. Its known that neutron stars and "quark stars" possesses a spherical electrosphere from their charge, but I'm not sure about planets or the sun. You should beable to see a spherical E-field field surrounding the sun if it had a significant charge, but I don't think we've ever seen that. there's a few predictions based on electric polarization, basically involving the separation of electrons from their orbits in the gravitational field, but they remain very theoretical at this point, and not many other publications have followed this idea I don't think. They predict ~100 C net charge, which is hardly significant compared to the size of the sun.

This paper gives a good summary (I can't post links yet, just search this paper title) "On the global electrostatic charge of stars" Astronomy and Astrophysics, v.372, p.913-915 (2001)

As was discovered in the nineteen-twenties, a significant electric field exists in the solar corona as well as in the solar interior. This field is a consequence of the tendency of light electrons to segregate from heavier protons in the solar gravitational field. Since the principle is valid for a plasma in every star, the result can be generalized. The presented paper is intended to rehighlight this significant physical property of stars. In particular, we stress that there has to be charge Qr inside a stellar sphere with radius r, which is linearly proportional to mass Mr inside the sphere. Both quantities are related as Qr = 77.043 Mr, if Qr is given in Coulombs and Mr in solar masses. The global stellar electrostatic field is 918 times stronger than the corresponding stellar gravity and compensates for a half of the gravity, when it acts on an electron or proton, respectively. The external electric field has to cause an occurrence of electric current and appropriate magnetic field in a highly conductive plasma, when, e.g., the plasma is in a turbulent motion or spirals onto a star in a hot accretion disc.
One thing I read in my physics book the other day, implies that the Earth is pretty much neutral, I'll quote it;

at any moment there are about 2000 thuderstorms taking place on the Earth. In total these are responsible for transferring negative charge down to the ground at 1800A. At this rate the groud should gain -1.6x108 C per day. If this gain in charge was not balanced by a loss of positive, the ground would soon become so charged that lightning strikes would not be possible due to repulsion.
Which implies that the positive out = the negative in, so it will remain largely neutral. Unless there's a delay in this process...
 
I don't get this thunderstorm argument - these are currents (up and down) that go in the thin atmospheric layer, they shouldn't effect the overall Earth charge, just like electric sparks in the lab don't change electrical neutrality of the building :smile:

Or am I missing something?

Borek
 
Last edited by a moderator:
Borek said:
I don't get this thunderstorm argument - these are currents (up and down) that go in the thin atmospheric layer, they shouldn't effect the overall Earth charge, just like electric sparks in the lab don't change electrical neutrality of the building :smile:

Or am I missing something?


No I don't think so, I think that's pretty much it. If there was a net charge, it would probably alternate between positive and negative between each strike. I think that the positive lightning travels upwards (sprites?) and generally negative lightning down. But I can't be sure. There may be a completely different process at work for all I know, and my textbook that I read this from is only A-level grade, so its probably a simplified explanation anyway :)
 
The Earth's average electric field at the surface is about 600 V/m. While Borek is right - this doesn't extend to all space, but is canceled by charge in the upper atmosphere, we can use this as an upper limit to the Earth's charge imbalance, and it's neutral to about one part in 10^26. That is, one extra (or missing) electron per kilogram of matter.

Most everyday objects are not nearly this neutral.

The extreme neutrality is because of the solar wind. If the Earth had a large positive charge, it would preferentially deflect protons and absorb electrons until that charge is canceled out. (And the reverse for a negative charge)
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K