Shyan said:
I agree with this. Indeed, it is easy to understand it intuitively. For tachyons, space and time exchange their roles (this is the most obvious in 1+1 dimensions). Normal massive matter is local in space but nonlocal in time (matter lives "forever" due to conservation in time), and has subluminal velocity dx/dt<1. Likewise, tacyon matter is local in time but nonlocal in space, and has subluminal
inverted velocity dt/dx<1. The Cauchy surface must be spacelike for normal matter ("initial" condition), but timelike for tachyons ("boundary" condition). Normal conscious beings experience "the flow of time", while tachyon conscious beings would probably experience "the flow of space".
The real problem appears when you have an
interaction between normal and tachyon matter. Should the Cauchy surface be spacelike or timelike? Locally it doesn't matter (Cauchy-Kovalevska theorem provides the local existence of a solution near the hypersurface), but globally the Cauchy problem is not well defined. This means that the initial/boundary condition cannot be arbitrary, because otherwise you can obtain inconsistencies (e.g. the grandfather paradox).
The above were features of classical fields, but quantization of tachyons leads to additional challenges. Canonical quantization gives a special status to the time coordinate, but for tachyons time and space should exchange their roles. Even if this is not a problem in 1+1 dimensions (at least if there are no interactions with normal matter), this is very problematic in 3+1 dimensions because, even in a fixed Lorentz frame, now we have 3 natural "canonical momenta" and 3 natural "Hamiltonians". How to perform canonical quantization with this? An option is to do covariant path-integral quantization, but it only works for calculation of n-point functions. If you want to calculate physical probabilities via something like LSZ formula, the problems of canonical quantization are turned back. For instance, should probabilities be conserved (in the sense of unitarity) in time or in space? Both options are problematic for tachyons.
Finally, let me emphasize that all this is not purely academic. Suppose that I want to describe the Higgs field before symmetry breaking, i.e. at sufficiently large energies. In that regime the Higgs field looks tachyonic, it is a quantum field, and it interacts with non-tachyonic matter. If one wants to describe the actual experiment with an accelerator such as LHC, the quantization and all the theory can still be done in the laboratory frame, which may be sufficient for a comparison with the experiment. But the theory (describing quantum interacting tachyons in the laboratory frame) will not be Lorentz invariant. Perhaps this is not inconsistent in an instrumental interpretation of quantum theory (according to which the role of quantum theory is not to describe nature as such, but to describe what can we say about nature in a given experimental setup), but it is at least disturbing.