I Do valence electrons determine electrical conductivity?

AI Thread Summary
Valence electrons play a significant role in determining electrical conductivity, with a common belief that fewer valence electrons lead to higher conductivity due to lower ionization energy. Metals with one valence electron, like silver and copper, are often the best conductors, as they can easily lose their electrons. However, the crystal structure also influences conductivity; for example, aluminium, with three valence electrons and an FCC structure, outperforms beryllium, which has two valence electrons and an HCP structure. The relationship between valence electrons and conductivity is complex and involves multiple factors, including crystal arrangement. Understanding this interplay is essential for clarifying how valence electrons affect electrical conductivity.
milkism
Messages
118
Reaction score
15
TL;DR Summary
Does lower valence electrons lead to higher electrical conductivity?
I have trouble researching whether valence-electrons take part in electrical conductivity. Some sources say that a lower amount of valence electrons lead to an higher electrical conductivity, whilst others say the opposite. And each have their different reasons, for example, lower valence electrons lead to higher electrical conductivity, because less energy is needed to move the valence electrons.

I personally think in generally how less the amount of valence electrons how greater the electrical conductivity, because the best conductors have 1 valence electron. Because it has smaller ionisation energy, which gives up electrons easier. But it's a combination of different factors like the crystal structures, with FCC structures being better in electrical conductivity.
Beryllium has two valence electrons, but it's not a better conductor than aluminium, which has three, because the crystal structure of beryllium is HCP, where aluminium's FCC. So the combination of valence-electrons and crystal structure makes aluminium a better conductor.

I would like to know if there's actually a relation between valence-electrons and electrical conductivity, and what the correct relation is.
 
Last edited:
Physics news on Phys.org
milkism said:
TL;DR Summary: Does lower valence electrons lead to higher electrical conductivity?

I have trouble researching whether valence-electrons take part in electrical conductivity. Some sources say that a lower amount of valence electrons lead to an higher electrical conductivity, whilst others say the opposite. And each have their different reasons, for example, lower valence electrons lead to higher electrical conductivity, because less energy is needed to move the valence electrons.

I personally think in generally how less the amount of valence electrons how greater the electrical conductivity, because the best conductors have 1 valence electron. Because it has smaller ionisation energy, which gives up electrons easier. But it's a combination of different factors like the crystal structures, with FCC structures being better in electrical conductivity.
Beryllium has two valence electrons, but it's not a better conductor than aluminium, which has three, because the crystal structure of beryllium is HCP, where aluminium's FCC. So the combination of valence-electrons and crystal structure makes aluminium a better conductor.

I would like to know if there's actually a relation between valence-electrons and electrical conductivity, and what the correct relation is.

From https://www.thoughtco.com/electrical-conductivity-in-metals-2340117

""Transfer of Energy​

The transfer of energy is strongest when there is little resistance. On a billiard table, this occurs when a ball strikes against another single ball, passing most of its energy onto the next ball. If a single ball strikes multiple other balls, each of those will carry only a fraction of the energy.By the same token, the most effective conductors of electricity are metals that have a single valence electron that is free to move and causes a strong repelling reaction in other electrons. This is the case in the most conductive metals, such as silver, gold, and copper. Each has a single valence electron that moves with little resistance and causes a strong repelling reaction.Semiconductor metals (or metalloids) have a higher number of valence electrons (usually four or more). So, although they can conduct electricity, they are inefficient at the task. However, when heated or doped with other elements, semiconductors like silicon and germanium can become extremely efficient conductors of electricity.""

my bolding
cheers
Dave
 
  • Informative
  • Like
Likes Klystron and milkism
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top