Do we have identities for the inverse tangent function for complex numbers?

Click For Summary
SUMMARY

The discussion focuses on identities for the inverse tangent function, specifically for complex numbers. It establishes that the identity for the difference of arctangents is given by $$\tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right) + k\pi$$, where $$k \in \mathbb{Z}$$. Additionally, it derives the real and imaginary parts of $$\arctan(x + iy)$$ using logarithmic and series representations, specifically for $$|z| < 1$$, leading to expressions involving sums of sine and cosine functions. The key formulas presented include $$\arctan(z) = \frac{i}{2} \ln{\left(\frac{i + z}{i - z}\right)}$$ and the series expansions for the real and imaginary parts.

PREREQUISITES
  • Complex analysis fundamentals
  • Understanding of logarithmic functions
  • Familiarity with series expansions
  • Knowledge of trigonometric identities
NEXT STEPS
  • Study the properties of complex logarithms
  • Explore the derivation of series expansions for trigonometric functions
  • Learn about the applications of inverse trigonometric functions in complex analysis
  • Investigate the angle-difference identities for tangent in greater detail
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced trigonometric identities and their applications in complex number theory.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Do we have identities for the following

$$\arctan(x+y) = $$

$$\arctan(x)-\arctan(y) = $$
 
Physics news on Phys.org
For the second one, we could write:

$$\tan^{-1}(x)-\tan^{-1}(y)=\theta$$

Take the tangent of both sides:

$$\tan\left(\tan^{-1}(x)-\tan^{-1}(y) \right)=\tan(\theta)=\tan(\theta-k\pi)$$ where $$k\in\mathbb{Z}$$

Apply the angle-difference identity for tangent on the left

$$\frac{x-y}{1+xy}=\tan(\theta-k\pi)$$

Hence:

$$\tan^{-1}(x)-\tan^{-1}(y)=\tan^{-1}\left(\frac{x-y}{1+xy} \right)+k\pi$$
 
I am looking for the real and imaginary part of

$$\arctan(x+iy) $$
 
-

ZaidAlyafey said:
I am looking for the real and imaginary part of

$$\arctan(x+iy) $$

[math]\displaystyle \begin{align*} \arctan{(z)} &= \frac{i}{2} \ln {\left( \frac{i + z}{i - z} \right) } \\ &= \frac{i}{2} \left[ \ln{ \left| \frac{i + z}{i - z} \right| } + i \arg{ \left( \frac{i + z}{i - z} \right) } \right] \\ &= -\frac{1}{2}\arg{ \left( \frac{i + z}{i - z} \right) } + i \left( \frac{1}{2} \ln{ \left| \frac{i + z}{i - z} \right| } \right) \end{align*}[/math]
 
ZaidAlyafey said:
I am looking for the real and imaginary part of

$$\arctan(x+iy) $$

For $|z|<1$ is...

$\displaystyle \tan^{-1} z = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n + 1}\ z^{2n + 1}\ (1)$

... and setting $\displaystyle z= x+ i y = \rho\ e^{i\ \theta}$, if $\rho <1$ You obtain...

$\displaystyle \mathcal{Re}\ \{\tan^{-1} z \} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n + 1}\ \rho^{2n + 1}\ \cos (2n+1)\ \theta\ (2)$

$\displaystyle \mathcal {Im}\ \{\tan^{-1} z \} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n + 1}\ \rho^{2n + 1}\ \sin (2n+1)\ \theta\ (3)$

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
5K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K