Does a pump face less back pressure if a vertical pipe is wider?

  • Thread starter Thread starter Ray F
  • Start date Start date
  • Tags Tags
    Pump
AI Thread Summary
A pump will face less back pressure when pumping water through a wider vertical pipe, such as a 20 mm diameter compared to a 10 mm diameter, assuming the flow rate remains constant. The hydrostatic pressure, which depends solely on the height, is the same for both pipe sizes. However, the resistance to flow, influenced by wall friction, is reduced in larger diameter pipes, leading to lower back pressure. This principle is often applied in systems like central heating, where larger pipes are used to minimize pressure loss. Therefore, using a wider pipe can enhance pump efficiency by reducing back pressure.
Ray F
Messages
1
Reaction score
0
How did you find PF?: google search

I've worked at sea for a number of years and now I'm particularly interested in learning more about fluid dynamics in order to find practical solutions to environmental problems. I would be very grateful for any advice people on this forum can give me.
At the moment I want to pump water up to the roof of a house. My question is this: will a pump that pumps water 10 meters up a vertical pipe of 10 mm Inside Diameter face less back pressure pumping the same water 10 meters up a pipe of 20 mm Inside Diameter? Or is the back pressure the same? Thank you for your help.
 
Engineering news on Phys.org
Ray F said:
How did you find PF?: google search

I've worked at sea for a number of years and now I'm particularly interested in learning more about fluid dynamics in order to find practical solutions to environmental problems. I would be very grateful for any advice people on this forum can give me.
At the moment I want to pump water up to the roof of a house. My question is this: will a pump that pumps water 10 meters up a vertical pipe of 10 mm Inside Diameter face less back pressure pumping the same water 10 meters up a pipe of 20 mm Inside Diameter? Or is the back pressure the same? Thank you for your help.
At the same flow rate in each case?
 
It depends upon the flow velocity and perhaps the surface roughness of the pipe. Here is a good simple treatment https://en.wikipedia.org/wiki/Friction_loss
The middle part is excellent, in my opinion. Please ask questions as necessary
 
Welcome to PF.

Ray F said:
Or is the back pressure the same?
To pump water upwards, you must overcome both the hydrostatic pressure, and the resistance to flow in the pipe.

Hydrostatic pressure is a function of height only, not of diameter.

The added back pressure, due to the resistance to flow, is due to wall friction of the water flowing in the pipe. It will be less for a bigger diameter pipe, but that back pressure will be dependent on the flow rate and the pipe details.
 
  • Like
Likes Juanda, Rive, russ_watters and 1 other person
The bigger pipe will put less back pressure on the pump for the same flow.
 
Joe591 said:
The bigger pipe will put less back pressure on the pump for the same flow.
As demonstrated by the fact that central heating (water) central heating often uses large bore pipes (according to a number of rules of thumb) according to the flow of water they need to take. I quote central heating because the system pressure is usually only a bar. Cold water supplies are straight off the mains and tend to use 15mm pipe throughout. Copper is too expensive for plumbing to be over generous with large bore pipes.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top