Does DC Power literally travels on the surface

  • Thread starter Thread starter Robin07
  • Start date Start date
  • Tags Tags
    Dc Power Surface
Click For Summary
SUMMARY

The discussion clarifies that direct current (DC) flows evenly across the cross-section of a wire, while alternating current (AC) tends to travel along the surface due to the skin effect. Users reference the 3M 9713 conductive tape, which is utilized for its effective shielding properties against electromagnetic fields. The conversation also explores the implications of induced magnetic fields on DC and AC currents, particularly in relation to the Lorentz force and the behavior of electrons in conductive materials. Participants emphasize the inherent differences between AC and DC in terms of their response to magnetic fields.

PREREQUISITES
  • Understanding of DC and AC current principles
  • Familiarity with the skin effect in electrical conductors
  • Knowledge of electromagnetic fields and their interactions
  • Basic concepts of the Lorentz force and its applications
NEXT STEPS
  • Research the skin effect in AC circuits and its implications for design
  • Explore the properties and applications of 3M 9713 conductive tape
  • Learn about the Inductrack configuration and its principles
  • Investigate methods to enhance the Lorentz force in electromagnetic applications
USEFUL FOR

Electrical engineers, physicists, and anyone involved in the design and application of electromagnetic systems, particularly those working with DC and AC currents.

Robin07
Messages
137
Reaction score
0
Does DC Power literally travels on the surface of the wire? Compared to AC electron travel which I understand to travel within the magnetic wire used. If so, or not, can anyone make referance to some study material for clarification or a better understanding in this regard.

Thanks for your assistance.
 
Engineering news on Phys.org
No, a steady DC flow of electrons is evenly spread out in the cross section of a wire, such that to minimize the potential difference between them.
 
Thanks what, I know that it was a uneducated/silly question, but I need to varify information that is found on the net.

Thanks again
Robin07
 
AC currents travel on the surface not DC. The higher the frequency the lower the penetration. You can use this to design shielding.
 
Ah, that clarifies things. I understand now why 3M would use 1- 2.5 etc. micron thicknesses in their adhesive, magnetic shielding tape, i.e. 3M 9713 xyz conductive tapes.

Is "sink effect" than sinonamous to AC current and/or is DC also effected by skin effect but to a smaller degree?

I've often wondered if you initiate electron flow in a very thin, micron thin, closed circuit loops with a powerfull rare Earth magnet(s). I understand that an equal and opposite field will be produced to repell the initiating field. As, Panda points out the higher the frequency the lower the penatration. So, is induced electron flow from a magnet/field, a low frequency? A constant influence? Can it be considered DC like? I would think that it would be a temporary but a constant(straight line) influence, direct as it were. Yes?
 
Robin07 said:
Ah, that clarifies things. I understand now why 3M would use 1- 2.5 etc. micron thicknesses in their adhesive, magnetic shielding tape, i.e. 3M 9713 xyz conductive tapes.

You are talking about this tape right?

http://multimedia.mmm.com/mws/mediawebserver.dyn?6666660Zjcf6lVs6EVs666yvYCOrrrrQ-


The shielding is only accomplished when you surround something with a good electrical conductor. No AC EM field will escape it. This tape is loaded with conditive fibers, making it a good conductor, that's all there is to it.



Robin07 said:
I've often wondered if you initiate electron flow in a very thin, micron thin, closed circuit loops with a powerfull rare Earth magnet(s). I understand that an equal and opposite field will be produced to repell the initiating field. As, Panda points out the higher the frequency the lower the penatration. So, is induced electron flow from a magnet/field, a low frequency? A constant influence? Can it be considered DC like? I would think that it would be a temporary but a constant(straight line) influence, direct as it were. Yes?


Yes a physical lorentz force will be exerted on the wire. The wire loop will move in the presence of external magnetic field. But it has nothing to do with the skin effect.

But during the transient time, when DC current changes from zero to a constant value, an inductive effect will take place. A piece of wire with a giant magnec close by will have some inductance. That will try to oppose the DC current.


The skin effect is where an AC current, (which flows back and forth from positve to negative) induces its own magnetic field which pulls the electrons apart. The faster they alternate, the farther apart they are being pulled in the cross section of a wire.

Also, an AC current in a wire at a perticular frequency will induce a current in another wire closeby, at the same frequency. Skin effect once again is not really helping inducing the current in another wire.

Hope that helps.
 
Last edited:
Yes, Wath that is the tape I'm referring to. Just so that we all are clear of my intention. I intend to use the 3M 9713 xyz tape not for sheilding or have an AC frequency involved at all. At this time I'm confirming that there is an inherent difference between AC and a DC, relative to how they are affected by an induced magnetic field. Thus far we seem to agree that there is.

If I may sumize what I undestand now is that an induced steady DC flow will tend to influence electrons, in a conductor, evenly spreading them out in the cross section of a wire/tape so that it minimizes the potential difference between them. So then if we use a micron filament/foil such as the 3M xyz tape in a closed loop configuration. This will also spread the potential difference across its' y axis? And in effect cause a magnetic field that will oppose the permanet magnets' induced field? The Lorentz force you refer to. Note: The permanet magnets I'm referring to are the rare Earth Neodyniums(N42), arranged in a Halbach array. I understand that this arrangement yields a field strong enough to lift 50x its' own weight. I would think that this is a very strong field eliminating the use of very large(giant), heavy permanent magnets. We also argree that an Loretz force will be exerted on the wire, in this case the 3M tape. If this conductive tape is stationary, afixed to minimize movement. Would the Halbach Array not then be moved away(repelled) by its' own induced field?

If all holds true? How is it that I will be able to strenghten the Lorentz effect so that the resulting induced field will be able to carry the weight of the Halbach Arrays and carry 49x more? in-order to accommodate a pay-load.

I have only looked and read on how the flux-field can be strengthened. Cooling of the medium that carries the exchange of electron flow does the trick, but this proves to be much too expensive to implement and maintain. The closest/available information is the Inductrack configuration, which I'm in the process of decifering with the limited information that's available.

Thanks what, Panda

Hey? If you find that I conclude without a clear understanding, tell me so. I would like to pursue this much futher.

Thanks Again
Robin07
 

Similar threads

Replies
6
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
6
Views
4K
Replies
7
Views
3K
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
3K
Replies
11
Views
2K